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Abstract
Accelerating scientific progress depends on developing and efficiently allocating resources towards the most promising
research directions. In experimental sciences, this often means predicting which experiments will yield meaningful results
before committing to costly physical validation. Although existing benchmarks evaluate AI systems on knowledge recall,
simulated environments, or theoretical reasoning, assessing their ability to predict outcomes of practical experiments remains
underexplored. We introduce SciPredict, a benchmark evaluating whether we can rely on current AI systems to predict
experimental outcomes in three key domains: physics, biology, and chemistry. The benchmark comprises of 405 questions
derived from recently published empirical studies (post-March 2025), which spans 33 subdomains, requiring models to reason
about real experimental systems. Unlike most benchmarks that assess whether AI has reached human-level performance,
experimental outcome prediction represents a domain where AI systems could substantially exceed human capabilities,
integrating vast cross-domain knowledge, processing complex parameter interactions, and identifying non-obvious patterns that
individual researchers cannot readily perceive. This raises two critical questions: can models predict experimental outcomes
with sufficient accuracy? and can we identify which predictions are trustworthy? Our analysis reveals fundamental limitations
on both fronts. Our evaluations on frontier models show that models accuracy ranges between 14% − 26% and accuracy
of human domain experts is ≈ 20%. Although some frontier models exceed human performance model accuracy is still far
below what would enable reliable experimental guidance. Second, even within this limited performance, models cannot
distinguish reliable predictions from unreliable ones. Models only achieve ≈ 20% accuracy even when they self-report very
high confidence in their answer and high feasibility in question (i.e., perceiving as it is highly feasible to predict the outcome
without running the practical experiment). In contrast, human experts demonstrate strong calibration: the accuracy of human
experts increases as they are get more confident in their answers and accuracy increases from ≈ 5% on questions they judge
infeasible to ≈ 80% on questions they consider feasible to answer without experimentation. Our findings demonstrate that
while frontier models are comparable to human experts in raw predictive accuracy, they fundamentally lack the calibration
awareness required for reliable deployment in experimental planning. SciPredict establishes a rigorous evaluation framework
for experimental outcome prediction and demonstrates that achieving superhuman performance in experimental science
requires not just better predictions, but better awareness of prediction reliability.

1. Introduction

Reasoning deeply about the expected outcome of experiments
before running them is a central part of scientific research and
ensuring efficient progress. Researchers routinely make such
predictions, deciding which hypothesis to test, which param-
eter regimes to explore, and which experiments to prioritize
under time and resource constraints. In a wet lab, choosing the
right conditions for a protein crystallization experiment can
mean the difference between months of productive research
and a dead end. In materials science, predicting which syn-

thesis parameters will yield a desired property helps avoid
costly trial-and-error. Even in fundamental physics, identify-
ing which parameter regimes merit experimental exploration
shapes how we allocate beam time at particle accelerators
and space on satellites. A system that could reliably antici-
pate experimental results would transform scientific practice,
accelerating discovery by filtering suboptimal directions, iden-
tifying gaps in current theory, and suggesting where empirical
investigation is most needed. As illustrated in Fig. 2 Large
language models (LLMs) appear well-suited for this task.
They encode vast scientific knowledge, can reason about com-

1

https://scale.com/research/scipredict


plex systems, and have demonstrated strong performance on
scientific question-answering benchmarks.
In part due to the lack of comprehensive benchmarks, the
progress toward improving the ability of LLMs to predict the
outcomes of practical experiments has been slow. Among
benchmarks that explore the use of LLMs to aid the scientific
research process, most focus on areas such as literature review
and paper writing [19, 20, 30], and reproducing simulated
experiments [21, 27, 31, 35]. Benchmarks that address hy-
pothesis or outcome prediction [7, 18, 34], are limited to AI
research tasks and do not test LLMs’ understanding of how
empirical experiments in the physical sciences behave.
We address this gap by introducing SciPredict, a benchmark
designed to systematically evaluate the ability of LLMs to
predict the outcomes of real practical experiments in physics,
biology, and chemistry. Rather than assess performance on
simulated or historical data, we ground our evaluation in
recently published empirical studies, papers appeared after
March 2025, beyond the training data cutoff dates of current
frontier models. For each task, domain expert human annota-
tors extract structured descriptions of experimental setups (the
system under investigation, the conditions imposed, the mea-
surements taken, and the interventions applied) and pair them
with the reported empirical results. Additionally, annotators
also provide any relevant background knowledge from prior
literature that could aid in predicting experiment outcomes.
We then query the models to predict the outcome considering
the relevant experimental details. This design ensures we are
testing genuine predictive reasoning rather than memorization
or pattern-matching against training data.
The benchmark comprises 405 questions spanning 33 subdo-
mains: 9 subdomains in physics, 10 subdomains in chemistry,
and 14 subdomains in biology. Questions vary in format
and we consider the following: multiple-choice, free-format,
and numerical value to capture different aspects of exper-
imental reasoning. Multiple-choice questions test whether
models can discriminate among plausible alternative outcomes.
Free-response questions assess whether models can articulate
predictions in their own words, demonstrating understanding
rather than recognition. Numerical value questions require
models to predict a specific quantitative value or a range,
the most stringent test of whether they have internalized the
relevant relationships. For numerical value questions ground
truth is given as a reasonable numerical value range and for
free-format questions we provide 1-10 expert written rubrics
for LLM based evaluations. We also experiment with provid-
ing background knowledge curated by domain experts which
allows us to measure how much models benefit from explicit
in-context information versus relying solely on their parametric
knowledge.
Our evaluations show that frontier LLMs achieve accuracy
between 14% − 26% while human experts achieve ≈ 20%.
Although some models exceed human performance, these ac-
curacy levels remain insufficient for scientists to rely on model
predictions when making resource-intensive experimental de-

cisions. More fundamentally, practical deployment requires
not just higher accuracy, but the ability to identify which
predictions are trustworthy. In practice, researchers want to
invest in experiments whose outcomes are feasible to predict
while remaining cautious on questions that are genuinely in-
tractable without running the physical experiment. To evaluate
this ability, we ask outcome predictors (models and human
experts) to provide two self-assessments for each question: (i)
feasibility, how feasible it is to predict the outcome from the
provided experimental details (and background knowledge)
without running the experiment, and (ii) confidence, how likely
their specific answer is to be correct. We observe that models
are not well calibrated. Model accuracy does not meaning-
fully improve with higher self-reported feasibility ratings or
higher confidence. Human experts, in contrast, demonstrate
strong calibration: their accuracy increases dramatically from
≈ 5% on questions they rate as infeasible (where physical
experimentation is essential) to ≈ 80% on questions they judge
feasible (where outcomes follow predictably from established
principles and reasoning).
To understand what information models need to make accu-
rate predictions, we systematically vary the availability of
background knowledge. When provided with expert-curated
background knowledge, models improve by an average of
≈ 3%, with gains ranging from 1.2% to 5.8% depending on
the model.
When models attempt to generate their own background
knowledge before answering, performance typically deterio-
rates. Even combining self-generated background with expert-
curated knowledge yields inconsistent results, frequently per-
forming worse than with expert knowledge alone. This pattern
reveals a troubling limitation: models not only struggle to
identify what background information would be helpful, but
the context they generate often introduces misleading assump-
tions or irrelevant details that interfere with predictions. We
investigate this further by filtering background knowledge per
model, removing facts the model can already answer correctly
when posed as standalone questions. Across nearly all models,
accuracy drops when using this filtered background compared
to the full expert-curated set, demonstrating that restating
known information in the input context meaningfully aids
prediction even when that information is already encoded in
the model parameters.
To assess whether frontier models are truly ready for scientific
deployment, we evaluate them not only on raw predictive
accuracy but also on their calibration (the ability to accurately
estimate their own confidence and the feasibility of an outcome
prediction task), and their robustness across different tasks.
Figure 1 summarizes some of our primary findings using a
representative subset of state-of-the-art models. We observe
that while models can approach human-level accuracy, more
robust performance relies on expert background knowledge
(BK) provided by human annotators rather than internal knowl-
edge retrieval, a major bottleneck of the current state-of-the-art
models according to our results. Additionally, multiple-choice
questions (MCQs) are consistently easier for models compared
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(a) Expert Background Knowledge
Improves Outcome Prediction Accuracy
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(b) Models are Consistently
More Accurate on MCQ Questions
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(c) Models Lack Calibration in
Confidence/Feasibility Prediction
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Figure 1: Key findings of SciPredict. Frontier models exhibit fundamental gaps in accuracy and calibration robustness in
scientific experiment outcome prediction. We highlight four key failure modes using a representative subset of state-of-the-art
models: Claude O4.5 (Claude Opus 4.5), OpenAI GPT-5.2, Gemini 3P (Gemini 3 Pro), Llama 3.3 (Meta Llama 3.3 70B),
and Qwen 3 235B. (a) Providing expert-curated background knowledge (BK) as context for experiment outcome prediction
consistently boosts performance over No Background Knowledge (NBK), suggesting models struggle to retrieve the required
knowledge internally. (b) Accuracy generally degrades when moving from multiple-choice questions (MCQ) to questions
requiring free-form answers (Free-Form) to Numerical value questions. (c) Unlike Human Experts (dahsed lines), models
show poor calibration in SciPredict tasks; the accuracy of the models’ answers to tasks do not correlate with their self-reported
Confidence and perceived task prediction Feasibility. Both metrics are expected to have a direct correlation with accuracy. (d)
SciPredict evaluates the accuracy of models predicting the outcome of scientific experiments in three domains of Biology,
Chemistry, and Physics. Prediction accuracy is not uniform. The Avg field shown represents the weighted average of scores
(weighted on the number of questions per domain), not the simple average of scores shown for the corresponding domains.

to free-form (and numerical) questions, which are also gen-
erally easier for models than Numerical-answer tasks (where
models have to predict specific outcome numbers).
Our key contributions in this work are:

• We introduce SciPredict, comprising 405 expert-curated
questions derived from empirical studies published af-
ter March 2025 across physics, biology, and chemistry.
Each question includes structured experimental descriptions,
expert-provided background knowledge, and ground-truth
outcomes. The benchmark spans multiple question formats
(multiple-choice, free-form, numerical value) and diverse
subdomains, enabling systematic evaluation of models’ abil-
ity to predict real experimental results. For free-form ques-
tions we provide expert annotated rubrics and for numerical
prediction questions we provide a reasonable range as the
ground truth.

• We evaluate 15 frontier LLMs under multiple conditions,
systematically varying background knowledge availability
(expert-curated, self-generated, filtered, and combinations
thereof), question format, and calibration dimensions. We
establish human expert baselines through a separate cohort
of domain specialists.

• We show that expert-curated background knowledge consis-
tently improves performance. Self-generated background
typically harms performance, even when combined with ex-
pert knowledge. We find that explicitly restating information

already encoded in model parameters improves accuracy,
and filtering out facts the model can already answer correctly
leads to worse performance. This reveals that models benefit
from having relevant knowledge surfaced in the immediate
context, regardless of whether that knowledge is accessible
from their parameters.

• We show that while frontier LLMs match or exceed human
experts in raw accuracy, however they cannot distinguish
reliable predictions from unreliable ones. Model accuracy
shows no meaningful correlation with self-reported confi-
dence, perceived difficulty, or judged feasibility, whereas
human experts are strongly calibrated to these signals.

2. Related Works

Expert-level benchmarks in science and professional do-
mains. Recent studies suggest that LLMs can approach
domain experts on selected tasks and in some cases surpass
them, while still exhibiting notable gaps in reliability, safety,
and grounded reasoning. In scientific computing, end-to-end
computational fluid dynamics remains a stringent test of sci-
entific reasoning, code generation, and numerical robustness,
highlighting domain-specific weaknesses that general progress
in NLP has not yet closed [26]. In healthcare, steady gains
are reported for LLM in multi-turn evaluations, written by
clinicians, but emphasize open challenges in robustness and
safety-critical decision support [3]. Complementing these per-
spectives, recent biology evaluations find that frontier LLMs
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Figure 2: LLM-enhanced efficient scientific research workflow. The figure illustrates how LLM-powered experimental
outcome prediction can be integrated into the scientific research process. Phase 1 involves ideation and experimental design
through literature review and hypothesis formulation. Phase 2 represents a fast, low-cost prediction loop where LLMs predict
experimental outcomes and identify high-potential experiments for physical validation, which researchers then review for
plausibility. Based on this evaluation, researchers either proceed to Phase 3 (resource planning and experiment setup) and
Phase 4 (empirical validation through physical experimentation), or archive the idea for later consideration. This workflow
demonstrates how reliable LLM predictions could accelerate scientific discovery by filtering suboptimal experimental directions
before committing to costly empirical validation.

can meet or exceed expert performance on several challenging
benchmarks, while also cautioning that saturation effects and
evaluation artifacts may inflate headline results [16]. Several
other benchmarks focus on the evaluation of LLMs in questions
from medicine [15, 23, 33], biomedical research [28], finance
[8], and law [11]. [10] presents a benchmark of 100 PhD-level
questions across a broad span of the aforementioned topics.
Although these benchmarks require specialized knowledge,
they have two primary shortcomings that our work addresses.
First, most do not require the same degree of complex reason-
ing. Second, they are not situated in the empirical settings that
define our benchmark, which is essential to assess real-world
performance.

AI/ML research benchmarks. Recent benchmarks have
begun evaluating LLMs on tasks that simulate the AI research
cycle itself, extending beyond problem-solving or knowledge
recall. [21, 27, 31, 35] evaluate LLMs for their ability to
reproduce masked or full code repositories and experiment
results given existing ML papers. [12] takes this a step further
by evaluating how well LLMs can write experiment code
for novel research ideas not seen during training. [6, 13,
14] evaluate agents on machine learning engineering tasks,
assessing their ability to iteratively modify algorithms and
improve performance across various datasets and tasks. [20]
focuses on research methodology, requiring LLMs to predict
masked out methodological details of AI research papers. [30]
evaluates LLM agents’ ability to provide technical details,
literature review, and open consulting to AI-related questions.
[7, 18, 34] extend evaluation to the entire AI research cycle,
asking LLM agents to propose novel ideas or hypotheses,
design and execute experiments, and write papers or solutions

without a reference. While all of these benchmarks advance the
evaluation of LLMs in research-oriented or engineering tasks,
they primarily emphasize ideation, writing, or code execution.
Our benchmark instead focuses on assessing LLMs’ ability to
understand and predict empirical scientific outcomes, a skill
particularly relevant for research in the physical sciences.

Non-ML scientific research benchmarks. LLMs have also
been evaluated for their performance on scientific research
tasks outside of AI. For example, [2] assesses LLMs on coding
and problem-solving tasks in computational physics. [25]
uses LLMs, leveraging their extensive domain knowledge
and reliable program synthesis, to infer scientific equations
directly from datasets; extending this, [29] turns LLMs into
autonomous scientists that code, evaluate, and iteratively
optimize the discovered equations. Similarly, [4] provides
LLM agents with written biology papers and evaluates their
ability to reproduce the methodology, code, and results. [19]
tests LLMs on their ability to do literature review, protocol
planning, and data analysis for biology research questions.
While these benchmarks are valuable for evaluating LLMs’
abilities in problem-solving, coding, and scientific writing,
they do not directly measure an LLM’s capacity to predict
empirical scientific outcomes.
Work on outcome prediction has so far focused mainly on
behavioral and social sciences. [9] and [24] evaluate LLMs
on predicting experimental outcomes or reproducibility, but
they operate in domains where measurements are often less
precise and quantitative. In contrast, our benchmark targets
the hard sciences, emphasizing quantitative prediction of
empirical results. [22] provides qualitative analysis of how
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well LLMs can answer theoretical physics questions using a
physics knowledge toolbox, but unlike their position paper, we
provide a standardized benchmark for quantitative evaluation.

LLM-driven scientific hypothesis generation While some
benchmarks ask LLMs to generate hypotheses for scientific
experiment settings, these works differ from our work in impor-
tant ways. [32] provides a benchmark where LLMs have to pro-
duce and rank novel hypotheses in chemistry when prompted
with background information and a set of hand-picked in-
spiration facts. [17] proposes a multi-agent framework that
combines language-model reasoning with a dual-mode evi-
dence engine to generate and iteratively refine grounded, novel
hypotheses in biomedicine. [1] examines the applicability
of large language models for hypothesis generation, focusing
their experiments on breast cancer therapy. [5] introduces an
LLM-driven approach to automating experimental design that
fuses relational learning–generated hypotheses with real-world
lab constraints and and is deployed on an automated cell and
metabolomics platform. While our benchmark also asks LLMs
to produce hypotheses in scientific settings, we crucially do
not single out inspiration facts, which can heavily influence
LLM performance on this task setting.

3. SciPredict Curation

SciPredict consists of 405 prediction tasks derived from em-
pirical studies published after March 2025 across physics,
biology, and chemistry. Each task presents models with the
essential components of an experimental setup: the system
under investigation, the conditions imposed, the measurements
taken, and the interventions applied. Models must then predict
outcome of the experiment.
The construction process balances several competing require-
ments. Questions must be challenging enough to distinguish
model capabilities yet tractable enough that expert-curated
background knowledge could plausibly aid prediction. Ex-
perimental setups must be described with sufficient precision
for informed reasoning without simply revealing the answer.
Ground truth outcomes must be objectively verifiable while
accounting for the inherent variability in empirical measure-
ments. We address these challenges through a multi-stage
curation process involving domain experts at every step.

3.1 Design Principles

Domain selection. We focus on three experimentally rich
domains physics, biology, and chemistry, where empirical vali-
dations play a central role in knowledge creation. The domains
were selected considering following criteria: 1) The domains
involve high-stakes applications in engineering, medicine, and
materials science where prediction errors carry real costs. 2)
Experimental protocols in the domains are well-documented,
enabling structured extraction of setup parameters and mea-
sured outcomes. 3) The domains provide sufficient diversity

to test whether models can generalize predictive reasoning
across distinct scientific contexts.

Question formats. To comprehensively evaluate scientific
reasoning capabilities, we consider three types of question
formats: multiple-choice (MCQ), free-form, and numerical
value questions. MCQs allow programatically gradable eval-
uations and make it easier for LLMs to isolate the correct
outcome among plausible alternatives. Free-form questions
evaluate whether the models can explain the expected results
in their own words and whether this explanation is correct and
close to how a scientist would describe and reason about an
outcome. Numerical value tasks test models’ ability to capture
quantitative effects rather than only qualitative measurements.
For MCQs, ground truth specifies the correct option or options.
For free-form questions, experts write detailed and comprehen-
sive evaluation rubrics. For numerical value questions, experts
define a reasonable range based on measurement precision and
experimental variability, and we evaluate whether the model’s
predicted value falls within this range.

3.2 Data Collection

Expert recruitment. To construct our benchmark, we re-
cruit a large cohort of experts in biology, physics, and chem-
istry. Among them, 54.5% hold a doctoral degree (PhD or
equivalent), 34.3% hold a master’s degree, and 11.2% hold
a bachelor’s degree. The experts represent a diverse set of
countries, including the United States (14.3%), India (14.3%),
United Kingdom (13.6%) , Argentina (7.3%), and more. See
Fig. 12 in Appendix A for more details.

Task curation. Each expert selects papers from their domain
that first appeared online after March 31, 2025. This strict
temporal cutoff ensures that experimental results do not appear
in the pretraining data of current frontier models, guarantee-
ing we evaluate genuine prediction rather than memorization.
Experts ensure selected papers are high quality and report
practical experimental results, rather than computational sim-
ulations or purely theoretical work. Papers must document
clear experimental protocols with sufficient methodological
detail for informed reasoning about results.
From each selected paper, experts extract and construct the
following components: 1) domain and specialized subdomain
classification, 2) experimental setup details, 3) measurements
taken from the experiment, 4) a prediction question about the
experimental outcome, and 5) ground truth answer is directly
extracted from the paper in a format specific to the question
type. Experts also curate relevant background knowledge
representing facts a well-informed scientist would consider
when reasoning about the experiment: domain principles,
prior findings, and theoretical frameworks. This background is
drawn from source papers and expert knowledge. An example
is provide in Fig. 3.
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Diverse Paper Collection

Publications first appearance date:
After Mar 31, 2025

Expert Data Annotation
Title: Cryopreservation of Platynereis dumerilii larvae
Link: https://www.biorxiv.org/content/10.1101/2025.07.31.667934v2
Domain & Field: Biology & Zoology / Cryobiology
Prediction Question Format: Multiple-Choice Question (MCQ)
Publication Date: Aug 2, 2025
Experimental Setup:

Researchers tested different individuals and combinations of cryoprotectant agents (CPAs), such
as dimethyl sulfoxide (Me₂SO), ethylene glycol (EG), ...
Measurements Taken: 

Exposure time in minutes after exposure to individual and combined CPAs
Survival post-thaw percentage after exposure to individual and combined CPAs

Required Background Knowledge:

Platynereis dumerilii is a marine annelid that has emerged as a significant model organism in
chronobiological, neurobiological, developmental and evolutionary biology research.
...

Question: 
The cryoprotectant toxicity of individual and combined cryoprotectant agents (CPAs) were

evaluated... Which of the CPAs would you expect to result in the highest post-thaw survival
percentage after the 3-minute exposure?

a) All individual CPAs tested will result in the same post-thaw survival percentage.
b) Only Me₂SO 1.4M will result in the highest post-thaw survival percentage.
c) Only EG 1.4M will result in the highest post-thaw survival percentage.
d) Only PG 1.4M will result in the highest post-thaw survival percentage.

Ground Truth Answer: A

Meticulous Quality Control

(and more)

Publications Domain 
Experts

SciPredict
Tasks

Q
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n 
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at Multiple Choice Questions (MCQ)

Numerical Questions
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Detailed Task Structure
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Domain 
Experts

Final Quality
Control

Comprehensive deterministic
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+

Sample SciPredict Prediction Task

Figure 3: Benchmark curation pipeline. The benchmark construction process begins with paper collection from recent
publications (post-March 31, 2025) across chemistry, biology, and physics domains from venues including ChemRxiv, arXiv,
and bioRxiv. Domain experts extract experimental setups and outcomes from these papers through structured annotation,
creating questions in three formats: multiple-choice (MCQ), numerical prediction, and free-form responses. Each question
includes the experimental setup, measurements taken, and background knowledge useful for predicting outcomes.

Human baseline recruitment. In addition to the experts
recruited to construct the benchmark, we recruit a separate
group of experts to serve as human baseline subjects. Each
human baseline subject is presented a question from our
baseline and is asked to answer the question, provide reasoning
for their answer, and rate their confidence in their answer.
Similar to how we evaluate LLM baseline models, we also
do another round of the questions, but this time revealing
the required background information to the human baseline
subject. For our human baseline subjects, 74.4% hold a
doctoral degree, 17.9% hold a master’s degree, and 7.7%
hold a bachelor’s degree. Regarding main area of expertise,
48.7% of them had main expertise in biology, 33.3% had
main expertise in chemistry, and 17.9% had main expertise
in physics. 33.3% of human baseline subjects were from the
United States, 17.9% were from Argentina, 15.4% were from
United Kingdom, 7.7% were from Mexico, and 5.1% were
from Colombia. See Fig. 12 for more details. In order to ensure
that human baseline subjects represent the expert level baseline
we conduct a rigorous matching between the subdomain of
their expertise and task subdomains. The expertise mapping
is provided in Tab. 1.

3.3 Quality Control

All data undergoes a multi-stage review process to ensure
scientific rigor. Initial screening filters questions where the
first version of the paper appeared online on or before March 31,
2025, experiments are simulations or theoretical derivations,

answers are directly stated in experimental setup descriptions,
phrasing is ambiguous, required predictions exceed available
information, or ground truth conflicts with source papers.
Questions passing initial screening goes through two layers of
domain expert reviewers who verify: 1) experimental setup
precision sufficiency for informed reasoning, 2) background
knowledge necessity and sufficiency, 3) ground truth clarity
and proper sourcing, and 4) appropriate difficulty level.
For MCQs, reviewers ensure distractors represent plausible
alternatives arising from reasonable but incorrect assumptions
rather than obviously wrong options. For free-form questions,
reviewers confirm evaluation rubrics capture essential scientific
reasoning without being overly prescriptive about phrasing.
Also ensures that rubrics are mutually exclusive and collective
exhaustive. Each rubric criteria is designed to be validated to a
binary outcome (satisfied or not). For numerical value question,
reviewers verify acceptable ranges are neither unrealistically
narrow (demanding impossible precision) nor trivially broad
(accepting nearly random guesses). Questions flagged during
review undergo revision or removal if fundamental problems
cannot be resolved.

3.4 Data Diversity

The benchmark spans 33 specialized subdomains across
physics, biology, and chemistry, ensuring models encounter
the full spectrum of experimental reasoning required in mod-
ern scientific practice. Within physics, questions draw from 9
subdomains such as experimental condensed matter physics,
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quantum & atomic physics, and high energy particle physics.
Biology questions cover 14 subdomains such as molecular
biology, neuroscience, plant biology, and ecology. Chemistry
spans 10 subdomains such as organic chemistry, catalysis, and
polymer chemistry.
Question complexity varies systematically along multiple axes.
Experimental systems range from controlled laboratory setups
with few interacting components to complex biological systems
with emergent properties. Some questions require single-step
causal reasoning ("What happens when we increase temper-
ature?"), while others demand multi-hop inference chains
such as integrating thermodynamics, kinetics, and material
properties. Background knowledge requirements also span a
continuum from questions answerable via freshman-level prin-
ciples to those requiring specialized domain expertise typically
held only by active researchers in the relevant subdomain.
Domain distribution remains sufficiently balanced to prevent
overfitting to particular experimental contexts: 25% ques-
tions come from physics, 50% from biology, and 25% from
chemistry. Question format distribution is similarly controlled,
with 40% multiple-choice, 32% free-form, and 28% numerical
value questions. This distribution reflects the natural variety
of prediction tasks scientists encounter sometimes we need
binary yes/no answers, sometimes qualitative descriptions of
mechanisms, and sometimes precise quantitative estimates.
Together, these diversity dimensions ensure the benchmark
probes models’ general capacity for experimental outcome
prediction rather than narrow pattern-matching on particular
experimental templates, question phrasings, or domain-specific
conventions.

4. Evaluation Setup and Metrics

Our dataset D comprises three subsets corresponding to differ-
ent question formats: multiple-choice questions DMCQ, free-
form responses DFF, and numerical value questions DNUM.
We evaluate a collection of candidate LLMs indexed by𝑚 ∈ M,
where each model 𝑚 produces a prediction 𝑦̂

(𝑚)
𝑖

for task 𝑖.
Beyond measuring prediction accuracy, we assess whether
models can identify which predictions are reliable, a crit-
ical requirement for practical deployment in experimental
planning. To this end, we collect three types of reliability
assessments from both models and human experts: confi-
dence scores 𝑐

(𝑚)
𝑖

∈ {1, 2, 3, 4, 5} representing the level of
model’s confidence that its prediction is correct; difficulty
ratings 𝑧

(𝑚)
𝑖

∈ {1, 2, 3, 4, 5} capturing how challenging the
model perceives the question to be; and feasibility judgments
𝑓
(𝑚)
𝑖

∈ {1, 2, 3, 4, 5} indicating whether the outcome can be
predicted without running the practical experiment.

4.1 Accuracy Metrics

We define accuracy separately for each question format to en-
able direct comparison across all three types while accounting

for their distinct evaluation requirements.
Multiple-choice (MCQ). Each question 𝑖 ∈ DMCQ presents
3-4 options with ground truth answer 𝑔𝑖 ∈ {1, 2, 3, 4} provided
by domain expert annotators. Accuracy is the proportion of
questions answered correctly:

Acc(𝑚)
MCQ =

1
|DMCQ |

∑︁
𝑖∈DMCQ

1[ 𝑦̂ (𝑚)
𝑖

= 𝑔𝑖]. (1)

This binary correctness criterion forms the basis for all subse-
quent analyses of confidence and feasibility calibration.
Free-form (FF). Each question 𝑖 ∈ DFF has a reference answer
𝑦𝑖 and an expert-written evaluation rubric. We employ an LLM
judge 𝐽𝜃 with a fixed prompt to assess whether the model’s
response 𝑦̂

(𝑚)
𝑖

demonstrates correct scientific reasoning:

𝑠𝑖 = 𝐽𝜃 ( 𝑦̂ (𝑚)
𝑖

, 𝑦𝑖) ∈ {0, 1}, Acc(𝑚)
FF =

1
|DFF |

∑︁
𝑖∈DFF

𝑠𝑖 . (2)

This metric evaluates whether a careful grader would judge
the answer correct regardless of stylistic differences from the
reference, capturing understanding rather than surface-level
pattern matching.
Numerical value (NUM). For each question 𝑖 ∈ DNUM, do-
main experts specify an acceptable range [𝐿𝑖 ,𝑈𝑖] accounting
for measurement precision and experimental variability. Accu-
racy reflects whether predictions fall within this scientifically
reasonable interval:

Acc(𝑚)
NUM =

1
|DNUM |

∑︁
𝑖∈DNUM

1[𝐿𝑖 ≤ 𝑦̂
(𝑚)
𝑖

≤ 𝑈𝑖]. (3)

This captures practical utility, whether the model’s quantitative
prediction is sufficiently accurate for experimental planning,
rather than demanding exact numerical matches.

4.2 Reliability Calibration

Reliable deployment in experimental science requires not
only accurate predictions but also the ability to distinguish
trustworthy predictions from unreliable ones. We assess
reliability through three complementary measures that capture
different aspects of epistemic self-calibration.

Confidence. For each prediction 𝑦̂
(𝑚)
𝑖

, we prompt the model
to report its confidence level 𝑐 (𝑚)

𝑖
∈ {1, 2, 3, 4, 5}, about the

correctness of its prediction (1 = very low confidence, 5 = very
high confidence). Well-calibrated confidence should stratify
questions by actual performance: high-confidence predictions
should prove correct more often than low-confidence ones. We
analyze calibration by computing empirical accuracy within
confidence bins and examining whether this relationship is
sufficiently monotonic.

Difficulty. Models provide difficulty ratings 𝑧 (𝑚)
𝑖

∈ {1, 2, 3, 4, 5}
representing perceived question hardness from the model’s
perspective (1 = very easy to answer, 5 = very hard to an-
swer). These ratings test whether models recognize their own
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limitations: if well-calibrated, questions rated as easy should
yield higher accuracy. Difficulty assessments also reveal
whether different models identify similar questions as chal-
lenging, providing insight into which experimental scenarios
pose fundamental reasoning difficulties versus model-specific
weaknesses.
Feasibility. Perhaps most critical for experimental planning,
feasibility judgments 𝑓

(𝑚)
𝑖

∈ {1, 2, 3, 4, 5} indicate whether
a question can be answered from first principles, domain
knowledge and reasoning without physical experimentation
(1 = impossible to answer without practical experiment, 5 =
very feasible to answer without practical experiment). A re-
searcher deciding whether to trust a model’s prediction would
invest resources in experiments judged feasible to predict
while remaining cautious about seemingly intractable prob-
lems. Well-calibrated feasibility would show high accuracy
on questions the model rates as feasible and low accuracy on
questions it rates as infeasible.
We compute calibration by stratifying questions according
to each reliability measure and examining whether empirical
accuracy varies as expected. For confidence and feasibility, we
expect positive correlations with accuracy; for difficulty, we
expect negative correlations. The strength and consistency of
these relationships quantify how reliably models can identify
their own trustworthy predictions.

4.3 Experimental Conditions

To understand what information models require for accurate
predictions, we systematically vary the availability of back-
ground knowledge across four conditions:
No Background Knowledge (NBK). Models receive only
the experimental setup, measurements, and question, testing
whether parametric knowledge suffices for prediction.
Background Knowledge (BK). Models additionally receive
expert-curated background knowledge representing facts a
well-informed scientist would consider when reasoning about
the experiment. This measures how much relevant context
improves prediction when that context is explicitly surfaced.
Self-generated Background (SBK). Models first generate
their own background knowledge before answering, assess-
ing whether they can identify and articulate helpful context
autonomously.
Self-generated + Annotator Background (SABK). Models
receive both their self-generated context and expert-curated
background, revealing whether combining sources yields addi-
tive benefits or introduces interference.
Filtered Background Knowledge (FBK). We also create a
filtered background condition for each model by converting
each background statement into a question, removing facts
the model can already answer correctly, and measuring per-
formance with this filtered set. This isolates whether stating
known information in context improves prediction even when
that information is theoretically accessible from parameters.

4.4 Models and Human Baseline

We evaluate 15 state-of-the-art LLMs in zero-shot settings:
OpenAI o1-mini, o3, o3-mini, o4-mini, GPT-5.2; Anthropic
Claude Sonnet 4.5, Opus 4.1, Opus 4.5; Google Gemini 2.5
Pro, 3 Flash, 3 Pro; Meta Llama 3.1 8B, Llama 3.3 70B;
Alibaba Qwen 3 32B, Qwen 3 235B; and DeepSeek v3. All
models receive identical task instructions and are evaluated
using the accuracy metrics defined above.
For human baselines, each expert answers questions in their
subdomain under both NBK and BK conditions, providing the
same reliability assessments (confidence, difficulty, feasibility)
that we collect from models. This parallel evaluation struc-
ture enables direct comparison of calibration between human
experts and AI systems.
Our evaluation design allows us to assess: (i) task performance
via accuracy across question formats and domains; (ii) confi-
dence calibration via the relationship between self-reported
probabilities and empirical correctness; (iii) difficulty calibra-
tion via correlation between perceived hardness and actual
accuracy; and (iv) feasibility calibration via the gap between
accuracy on questions judged answerable from theory versus
those requiring empirical validation.

4.5 Evaluation Protocol and Robustness

All free-form responses were evaluated using Gemini-3-Pro as
the judge model, which assessed whether model predictions
satisfied the expert-written rubrics. To verify robustness of
our evaluation pipeline, we conducted several validation ex-
periments. First, we replicated the evaluation using GPT-5.2
as an alternative judge model and observed no statistically
significant differences in model rankings or aggregate accu-
racy scores. Second, we explored the sensitivity of model
performance to inference hyperparameters, testing various de-
coding strategies (temperature settings from 0.0 to 1.0, top-p
sampling with 𝑝 ∈ {0.9, 0.95, 1.0}. Across all tested configu-
rations, performance variations remained within the error bars
established through our three-trial experimental protocol. All
reported accuracy metrics represent means computed across
these three independent runs, with error bars indicating one
standard deviation. This consistency across judge models and
hyperparameter settings demonstrates that our findings reflect
fundamental model capabilities rather than evaluation artifacts
or sampling variance.

5. Main Results

We evaluate whether frontier language models can predict
experimental outcomes with sufficient accuracy and reliability
for practical scientific deployment. Our analysis proceeds in
two parts. First, we measure raw predictive performance: can
models correctly anticipate what will happen when researchers
execute the described experiments? Second, and more crit-
ically for real-world application, we assess whether models
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possess the reliability awareness to identify which of their
predictions merit trust, a capability we term calibration. A
model that achieves 60% accuracy but cannot distinguish its
correct predictions from incorrect ones offers little value for
experimental planning, as researchers cannot determine which
suggestions to pursue. Conversely, even modest accuracy
becomes actionable when paired with reliable confidence esti-
mates that guide resource allocation toward high-probability
successes.
All experiments reported in this work were conducted with
web search capabilities disabled for all evaluated models. This
design choice is critical to ensure our benchmark measures
genuine predictive reasoning rather than information retrieval.
Since our evaluation draws from papers published after March
2025, beyond the training cutoff of current frontier models,
enabling web search would allow models to potentially locate
and access the original publications, thereby converting the
prediction task into a lookup task. This would fundamentally
undermine our goal of assessing whether models can reason
about experimental outcomes from first principles and provided
context. By disabling web search, we ensure that model
predictions reflect only their parametric knowledge, reasoning
capabilities, and ability to leverage the provided experimental
details and background knowledge, rather than their capacity
to search for and retrieve the ground truth answers.
We find that frontier models achieve accuracy between 14%
and 26% on experimental outcome prediction, placing them
roughly on par with domain expert performance of approxi-
mately 20%. While some models marginally exceed human
baselines, these accuracy levels remain far below the threshold
required for autonomous experimental guidance. More fun-
damentally, models exhibit severe calibration failures across
all reliability metrics. Models 𝑚 ∈ M report high confi-
dence 𝑐

(𝑚)
𝑖

∈ {4, 5} even on questions where they achieve
only 20% accuracy, judge questions as highly feasible to an-
swer ( 𝑓 (𝑚)

𝑖
= 5) without experimentation yet perform no

better on these items than on questions they rate as infeasible
( 𝑓 (𝑚)

𝑖
= 1), and show no systematic relationship between

self-reported difficulty 𝑧 (𝑚) and actual performance Acc(𝑚) .
Human experts, by contrast, demonstrate strong calibration:
their accuracy ranges from approximately 5% on questions
they judge infeasible (where physical experimentation is es-
sential) to approximately 80% on questions they consider
feasible (where outcomes follow predictably from established
principles). This calibration gap proves more consequential
than the accuracy gap, models not only lack the knowledge
to predict reliably, but critically, they lack the self-awareness
to recognize the boundaries of their predictive capabilities.
Without this metacognitive foundation, even incremental accu-
racy improvements cannot translate into trustworthy scientific
tools.

Finding #1: Providing curated background knowledge
consistently improves the outcome prediction accuracy.

0 10 20 30

Accuracy (%)

Llama 3.1 8B

OpenAI O4-mini

Qwen 3 235B

Gemini 2.5 Pro

Qwen 3 32B

OpenAI O3

Llama 3.3 70B

DeepSeek v3

OpenAI O3-mini

OpenAI GPT 5.2

Gemini 3 Flash

Claude Opus 4.1

Claude Sonnet 4.5

Claude Opus 4.5

Gemini 3 Pro

M
od

el

∆ ≈ 1.2%

∆ ≈ 4.0%

∆ ≈ 3.7%

∆ ≈ 5.8%

∆ ≈ 2.1%

∆ ≈ 4.2%

∆ ≈ 1.6%

∆ ≈ 2.8%

∆ ≈ 1.6%

∆ ≈ 2.2%

∆ ≈ 1.7%

∆ ≈ 3.2%

∆ ≈ 4.4%

∆ ≈ 4.3%

∆ ≈ 2.1%

Human Expert

NBK

BK

Figure 4: Accuracy with and without background knowl-
edge. Accuracy (%) of each evaluated model under two input
conditions: 1.) w/o background knowledge: the model receives
only the experimental setup, measurements, and the question;
2.) w/ background knowledge: the same information as previ-
ous case with the addition of annotator-provided background
knowledge collected during task generation.

A key factor in answering the questions correctly, for humans
and presumably LLMs, is access to relevant background
knowledge. We test this by running two conditions: (i)
models answer without background knowledge (NBK) and
(ii) models answer with curated background knowledge (BK).
As shown in Fig. 4, removing the background knowledge
substantially reduces the accuracy Acc(𝑚) across all models
𝑚 ∈ M, though the size of the drop varies by model (largesOkt
for GPT-5; smallest for Claude Sonnet 4.5). On average, BK
improves accuracy by ∼3%. One interpretation is that curated
background knowledge provides missing domain assumptions
and narrows the space of plausible outcomes. It is also noted
that confidence scores 𝑐 (𝑚) remain roughly the same across
NBK and BK. This suggests that background information
primarily benefits correctness rather than shifting self-reported
confidence.

Finding #2: Human performance is close to the average
model performance

We emphasize that human expert performance in our bench-
mark serves as a calibration reference point rather than an
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upper bound on achievable performance. Experimental out-
come prediction represents a domain where AI systems could
substantially exceed human capabilities by integrating vast
cross-domain knowledge, processing complex multi-parameter
interactions at scale, and identifying non-obvious patterns
across millions of prior experiments capabilities that individ-
ual researchers cannot readily match. Our human baseline
(≈ 20% accuracy Fig. 4) reflects the inherent difficulty of
predicting novel experimental outcomes without conducting
the physical experiment, even for domain experts. Critically,
human experts demonstrate strong calibration achieving 5%
accuracy on questions they judge infeasible ( 𝑓 (𝑚)

𝑖
= 1) versus

80% on feasible questions ( 𝑓 (𝑚)
𝑖

= 5) indicating they possess
reliable calibration awareness about prediction reliability that
current models lack. To ensure high-quality expert baselines,
75% of our human evaluators hold doctoral degrees (PhD or
equivalent), with the majority of remainder holding master’s
degrees, all with demonstrated expertise in their respective do-
mains. Furthermore, we assigned evaluation tasks to experts by
matching our 33 fine-grained subdomains to individual expert
specializations, ensuring that evaluators assessed questions
within their area of active research expertise. This fine-grained
matching maximizes the quality of human predictions while
acknowledging that even domain experts face fundamental
limitations when predicting complex experimental outcomes
without empirical validation.

Finding #3: Across nearly all models, accuracy is higher
with the full annotator background than with the filtered
version, implying that including knowledge the model can
already answer still boosts performance.

Fig. 5 shows that restating known facts in the input context
enhances model performance, even when those facts are not
strictly missing from the model’s parametric knowledge. By
filtering the curated background per model-removing any
background items for which the model can already answer
the corresponding question correctly-the x-axis approximates
performance when the context contains only “unknown” back-
ground. Yet most models fall in the upper triangle (above the
y = x line), illustrating accuracy Acc(𝑚) is higher when the
full curated background is provided, including facts the model
demonstrably knows (BK). Repeating known information can
foreground relevant priors, reduce ambiguity, align terminol-
ogy and assumptions with the task, and provide a structured
scaffold that helps models apply what they know to the specific
prediction setting.

Finding #4: Models cannot reliably generate useful back-
ground knowledge: self-generated/synthetic background
usually reduces accuracy, and even when combined with
gold background it rarely improves performance.

To test whether models can supply their own helpful context,
we evaluate settings where models self-generate background
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Figure 5: Restating known facts in context enhances model
performance. Scatter plot comparing each model’s bench-
mark accuracy when given the full annotator-curated back-
ground (y-axis; “w/ background (BK) accuracy (%)”) versus
when given a filtered version of that background (x-axis; “w/
filtered background (FBK) accuracy (%)”). Filtering is per-
formed per model: each original background statement is
converted into a question, the model answers these questions,
and we remove the background statements whose correspond-
ing questions the model answers correctly (i.e., we keep only
background the model appears not to already know). Each
point corresponds to one evaluated model, colored by model
family; the dashed diagonal indicates equal performance under
both context conditions (y = x). Marker size encodes the per-
centage of background-related questions answered correctly by
the model (larger circles = more background already known),
as shown in the legend. Most points lie above the diagonal
(upper triangle), indicating higher accuracy with the full back-
ground than with the filtered background. All models have a
background knowledge accuracy > 70%.

knowledge (SBK) and then answer, as well as a combined
condition that appends this self-generated context to annotator-
provided background (SABK). Fig. 6 shows that, in con-
trast to the clear gains from curated background knowledge,
self-generated background is unreliable and often counterpro-
ductive: for most models, SBK lowers accuracy compared
to providing no background at all, implying that the gener-
ated content is frequently irrelevant or misleading and can
steer predictions away from the correct experimental outcome.
Moreover, supplementing gold background with synthetic
background (SABK) typically fails to yield consistent improve-
ments, indicating that models struggle not only to generate
helpful knowledge, but also to avoid introducing distracting or
harmful information when additional context is available.
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Figure 6: Self-generated background knowledge is often
harmful. Accuracy (%) for each model under four context
conditions: NBK (no background knowledge; models receive
only the experimental setup, measurements, and question),
BK (annotator-provided background knowledge), SBK (model
self-generated/synthetic background knowledge), and SABK
(self-generated background combined with annotator-provided
background). Across most models, BK yields the highest
accuracy, while SBK frequently degrades performance or
provide no significant performance gain relative to NBK,
indicating that models do not reliably identify or generate
background knowledge that improves outcome prediction.
Adding self-generated background on top of gold background
(SABK) also rarely provides consistent gains, suggesting that
extra synthetic context can introduce noise or misleading cues
even when correct background is available.

Finding #5: Self-assessed confidence/difficulty/feasibility
by models are not aligned with performance, indicating
calibration gaps. Human calibration shows confidence/d-
ifficulty/feasibility exhibit the expected correlation with
accuracy

Fig. 7 shows whether forecasters 𝑚 ∈ M can anticipate
their own errors by comparing empirical accuracy Acc(𝑚) to
self-reported confidence 𝑐 (𝑚) , perceived difficulty 𝑧 (𝑚) , and
perceived feasibility 𝑓 (𝑚) of answering without executing the
underlying experiment. If these self-assessments were infor-
mative uncertainty estimates, accuracy would rise (Acc(𝑚) ↑)
monotonically with confidence (𝑐 (𝑚) ↑), fall with difficulty
(𝑧 (𝑚) ↓), and rise with feasibility ( 𝑓 (𝑚) ↑). Instead, the top-
row plots show weak, inconsistent, and often non-monotonic
relationships: bins that models label as higher-confidence are
not reliably more accurate, and increases in model-reported
difficulty or decreases in model-reported feasibility do not

consistently correspond to lower accuracy. This lack of struc-
ture indicates substantial miscalibration in model self-reports,
limiting their usefulness for prioritizing which predictions
can be trusted or which cases warrant additional evidence
collection. In contrast, the bottom-left subplot demonstrates
that human confidence, difficulty, and feasibility judgments
track correctness in the expected direction, and the same
human-calibrated difficulty and feasibility scores impose a
clear ordering over model performance in the bottom-middle
and bottom-right subplots. Concretely, when evaluated against
human calibration, models systematically achieve higher accu-
racy (Acc(𝑚)

𝑖
↑) on items judged more feasible ( 𝑓 (𝑚)

𝑖
↑) and

less difficult (𝑧 (𝑚)
𝑖

↓), implying that the benchmark’s variation
in answerability is captured by human assessments even when
models’ own self-evaluations fail to do so.

Finding #6: LLM-based error classification reveals that
there are two error patterns that dominate across models:
1) factual extraction errors and logical reasoning flaws,
with both factual contradiction and information fabrication
affecting ≈ 50% of incorrect responses, 2) logical and
reasoning flaws, with unsupported assumptions affecting
≈ 80% of incorrect responses.

To understand the nature of model failures in experimental
outcome prediction, we employ an LLM judge to systemat-
ically classify errors across 16 specific error types grouped
into five main categories. Results are provide in Fig. 8. The
analysis reveals that failures concentrate in two primary areas:
factual and extraction errors (affecting 80.09% of incorrect
responses) and logical and reasoning flaws (affecting 87.42%
across models). Within factual errors, factual contradiction
51.96% and information fabrication particularly 51.19% preva-
lent across models, indicating that models frequently fail to
incorporate relevant experimental details when making pre-
dictions. Smaller models like Llama 3.1 8B show distinctly
higher rates of disconnected reasoning 28.0% compared to
frontier models (≤ 4%), suggesting that model scale correlates
with reasoning sophistication. Deficiencies in scientific rigor,
while considerably widespread (≈ 50%), primarily manifest
as false certainty (43.61% across models), models express-
ing high confidence (𝑐 (𝑚)

𝑖
∈ {4, 5}) in incorrect predictions

(𝑦̂𝑖 ≠ 𝑔𝑖), which directly explains our earlier finding that model
confidence scores fail to stratify accuracy. Importantly, basic
comprehension errors remain rare (<10% for most subtypes),
confirming that models understand what is being asked but lack
the reasoning capabilities to integrate experimental details,
apply relevant domain principles, and assess prediction reliabil-
ity. These error patterns indicate that improving experimental
outcome prediction requires advances in factual grounding and
logical reasoning rather than better instruction following or
task comprehension. We conduct this analysis considering all
the questions in the benchmark. We also conduct an additional
analysis considering only the questions human experts marked
as feasible to answer without running the practical experiment
( 𝑓 (𝑚)

𝑖
= 5). The results are provided in Fig. 13. We see similar
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Figure 7: Models are poorly calibrated in self-reported confidence, difficulty, and feasibility, whereas human calibration
correlated with accuracy. Top row: empirical accuracy (y-axis) plotted against model-provided 1) confidence in its answers,
2) perceived question difficulty, and 3) perceived feasibility of predicting the experimental outcome without running the
experiment. Each circle corresponds to a single model at a particular confidence/difficulty/feasibility level, and circle
color corresponds to the percentage of the number of questions assigned to that level by that model. Under well-calibrated
assessments, accuracy should increase with confidence, decrease with difficulty, and increase with feasibility. The observed
relationships are weak and often non-monotonic. Bottom row: calibration using human judgments. The left subplot reports
the human baseline’s accuracy vs human confidence, difficulty, and feasibility, exhibiting the expected monotonic trends.
The middle and right subplots report model accuracy as a function of human-calibrated difficulty and human-calibrated
feasibility, respectively. Circle color corresponds to the percentage of the number of questions assigned to that level by humans.
These plots also recover the expected trends, indicating that human calibration provides a substantially more reliable signal of
question answerability than model self-reports.

error patterns in this case as well.

Finding #7: MCQs are substantially easier than free-form
and numerical value tasks.

As shown in Fig. 9 we find that model accuracy is highly
sensitive to answer format, with multiple-choice questions
substantially easier than open-ended generation and especially
numerical prediction. This gap is not merely a matter of
“MCQs being easier because the correct option is visible,” but
appears to reflect a broader dependence on recognition over
generation: MCQs let models compare candidates and pick the
closest match, while free-form and numerical formats require
constructing a specific claim/value and committing to it. To
isolate format from content, we convert MCQs into matched
free-form prompts (MCQ→FF) and re-run evaluation. The
resulting drop, visible across essentially all model families,
shows that simply removing the provided options degrades
accuracy even when the underlying experimental scenario
is unchanged. This suggests that headline MCQ accuracy
Acc(𝑚)

MCQ can overestimate how reliably a model would perform
in realistic scientific workflows, where predictions are typi-
cally produced in open form Acc(𝑚)

FF (and often as quantities).

Finally, the steepness of the MCQ→free-form drop varies
by model, implying meaningful differences in robustness to
output constraints.

Finding #8: Performance varies by scientific domain, with
Chemistry typically the most challenging.

Fig. 10 shows that Chemistry consistently have the lowest
accuracy on average compared to Biology and Physics. This
domain gap is particularly visible for the human baseline,
where Chemistry accuracy is 8.82% compared to 23.15%
(Biology) and 26.00% (Physics). Even the best-performing
(frontier) models improve overall accuracy, but their gains are
not uniform across domains, indicating that scaling or general
instruction-following ability does not fully translate into robust
empirical reasoning in Chemistry. This pattern suggests that
our benchmark is sensitive to domain-specific experimental
knowledge and intuitions.

Finding #9: Performance on this benchmark has a strong
correlation with performance on HLE benchmark.
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Figure 8: Analysis of model errors. We employ an LLM judge to systematically classify errors in model predictions
according to a hierarchical taxonomy spanning five top-level (in black background) categories and 16 specific error types. The
heatmap shows the percentage of incorrect responses containing each error type for each evaluated model. Error categories
progress from surface-level issues (Comprehension & Scope) to deeper reasoning failures (Logical & Reasoning Flaws) to
fundamental scientific deficiencies (Deficiencies in Scientific Rigor). Models can exhibit multiple error types simultaneously,
so accumulative percentage scores within top-level categories may exceed 100%. SciPredict tasks contribute to top-level
category percentages if flagged with at least one underlying error type.

Fig. 11 helps disentangle how much performance on SciPredict
(NBK) reflects broad hard-reasoning capability versus a more
task-specific ability to anticipate empirical outcomes from
experimental descriptions. Although the overall association
with HLE is positive, the dispersion around the trendline
is substantial: models with similar HLE text-only accuracy
can differ by several points on NBK accuracy. This residual
structure is informative some models overperform relative
to what their HLE score would predict (e.g., DeepSeek v3
achieves comparatively strong NBK accuracy despite very
low HLE, and Claude Sonnet 4.5 / Claude Opus 4.1 sit above
the fitted line), while others underperform given their HLE
level (e.g., Gemini 2.5 Pro, OpenAI O3, and GPT-5.2 fall
below the line). These deviations suggest that, beyond general
text-only reasoning, strong results on SciPredict also depend
on scientific priors and experimental intuition: identifying
which intervention details are causally relevant, mapping
measurements to plausible mechanisms, and remaining robust
when background context is withheld in the NBK setting.

6. Discussion and Conclusion

Our investigation reveals that while frontier LLMs achieve
accuracy levels (14 − 26%) comparable to human experts
(≈ 20%) in predicting experimental outcomes, this apparent
parity masks a critical inadequacy: models fundamentally
lack the calibration awareness required for trustworthy deploy-
ment in experimental planning. The most striking finding
is the contrast in calibration robustness between models and
humans. Human experts demonstrate strong calibration-their
confidence correlates with correctness and their feasibility
judgments stratify questions by actual answerability (from
≈ 5% accuracy on problems judged infeasible to ≈ 80%
on those deemed feasible). Models, conversely, maintain
roughly uniform performance (≈ 20% accuracy) regardless
of self-reported confidence, perceived difficulty, or feasibility
assessments. This miscalibration is not merely a technical
deficiency but represents a fundamental barrier to practical
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Figure 9: Question format influence the accuracy. Accuracy decreases in the question type order of MCQ, free form
and numerical value questions. Answer format drives large swings in model accuracy under identical experimental content.
We evaluate each model in the NBK setting across four response formats: MCQ, free-form, numerical value, and MCQ→FF
(MCQs rewritten into matched free-form prompts and re-scored), which isolates the effect of removing provided answer
options. Points denote per-model accuracy; error bars indicate uncertainty over the question set. Accuracy is consistently
highest for MCQs, lowest for numerical prediction, and drops systematically when converting MCQs to free-form, showing
that reported performance depends strongly on how predictions are elicited.
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Figure 10: Domain specific accuracy. Heatmap of model ac-
curacy (%) on benchmark questions, broken down by scientific
domain (Biology, Physics, Chemistry). Results are provided
for the evaluated models and human baseline. Overall, fron-
tier models achieve the highest accuracies, but performance
varies substantially by domain; Chemistry tends to be the
most challenging subset, and several models (including the hu-
man baseline) exhibit performance degradation on Chemistry
relative to Biology/Physics.

use. A scientist deciding whether to invest resources based
on model predictions requires reliable uncertainty estimates,
not just average accuracy. Our experiments with background
knowledge reveal additional limitations: expert-curated con-
text consistently improves performance by ≈ 3%, yet models
cannot reliably identify or generate helpful background au-
tonomously, self-generated background typically degrades
predictions. Performance varies substantially across domains
(chemistry proving most challenging) and formats (MCQ
accuracy far exceeding free-form or numerical prediction),
suggesting that scaling alone will not uniformly translate to
better experimental prediction. The moderate correlation (r
≈ 0.46) between SciPredict and general reasoning benchmarks
indicates that empirical prediction requires domain-specific
intuitions and experimental familiarity that current training
paradigms may not adequately develop.
These findings have important implications for scientific AI
assistance. Current models can recognize plausible outcomes
when presented with options but struggle to construct predic-
tions independently or assess when experimental validation
is truly necessary versus when outcomes follow predictably
from established principles. Human experts develop these
capabilities through laboratory experience, understanding the
boundaries of theoretical predictability and recognizing which
aspects of experimental setups are causally relevant. The cali-
bration gap reflects a fundamental difference between pattern
recognition in training data and genuine scientific reasoning
about empirical systems. For AI to meaningfully accelerate
discovery through experimental outcome prediction, achieving
superhuman performance requires not merely better predic-
tions but better awareness of prediction reliability, systems that
can accurately assess their calibration robustness and identify
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Figure 11: Model accuracy on SciPredict correlates with
performance on the HLE benchmark. Benchmark perfor-
mance correlates with general hard-reasoning performance.
Scatter plot of each evaluated model’s accuracy on SciPredict
in the no-background-knowledge (NBK) setting (y axis) versus
its HLE text-only accuracy (x axis). The solid line shows a
linear fit and the shaded region indicates the corresponding con-
fidence bands. Overall, SciPredict NBK accuracy exhibits a
moderate positive correlation with HLE performance (Pearson
r ≈ 0.46), suggesting that broader reasoning capability explains
some-but not all-variance in empirical outcome prediction.

when sufficient information exists to make reliable predictions
versus when empirical validation is indispensable.
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A. Additional Dataset Details

A.1 Additional details about task contributors / human baseline participants

We provide additional visualizations of the degree, expertise, and country of origin diversity of the experts recruited for
benchmark construction and human baseline. Overall, our experts have strong credentials in their respective fields. For the
human baseline, we match experts with relevant expertise to task domains and subdomains; see Tab. 1 for more details.
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Figure 12: Diversity of the experts recruited for benchmark construction and human baseline. Top left: A plot of the
highest degree distribution of experts recruited for benchmark construction. Top center: A plot of the domain expertise of
experts recruited for benchmark construction. Top right: A plot of the highest degree distribution of experts recruited for
human baseline. Bottom left: A heatmap of the countries of origin of experts recruited for benchmark construction. Bottom
right: A heatmap of the countries of origin of experts recruited for human baseline.

A.2 Human baseline expert - Task subdomain mapping

Table 1: Subfield expertise of human annotators, grouped by the task domains (Physics, Chemistry, Biology) and subdomains.

Task Domain Subdomain Human Baseline Subfields

Physics

All Physics Advanced Chemical Engineering, Applied And Interdisciplinary Physics, Applied Physics And Interdis-
ciplinary, Chemical Engineering, Classical And Mechanical Physics, Condensed Matter And Materials,
Electromagnetism And Optics, Engineering Physics, High-energy And Nuclear Physics, Radiophysics
& Electronics, Theoretical Physics, Zoology

Condensed Matter & Materi-
als Physics

Advanced Chemical Engineering, Applied Physics And Interdisciplinary, Chemical Engineering,
Condensed Matter And Materials, Electromagnetism And Optics, Engineering Physics, Radiophysics &
Electronics

Materials Chemistry Condensed Matter And Materials, Engineering Physics

Optics, Photonics & Laser
Physics

Applied Physics And Interdisciplinary, Condensed Matter And Materials, Electromagnetism And Optics,
Engineering Physics, Radiophysics & Electronics, Zoology

High-Energy / Nuclear / Par-
ticle Physics

Engineering Physics, High-energy And Nuclear Physics, Radiophysics & Electronics, Theoretical
Physics, Zoology

Applied & Instrumentation
Physics

Applied And Interdisciplinary Physics, Applied Physics And Interdisciplinary, Classical And Mechanical
Physics, Condensed Matter And Materials, Electromagnetism And Optics, Engineering Physics, High-
energy And Nuclear Physics, Radiophysics & Electronics

Quantum & Atomic Physics Applied Physics And Interdisciplinary, Condensed Matter And Materials, Electromagnetism And Optics,
Engineering Physics, Radiophysics & Electronics, Zoology
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Task Domain Subdomain Human Baseline Subfields

Plasma & Nonlinear Physics Applied Physics And Interdisciplinary, Classical And Mechanical Physics, Electromagnetism And
Optics, Engineering Physics, Radiophysics & Electronics

Biophysics Advanced Chemical Engineering, Applied Physics And Interdisciplinary, Chemical Engineering,
Condensed Matter And Materials, Electromagnetism And Optics, Radiophysics & Electronics

Mechanical / Energy /
Thermo / Fluid Physics

Classical And Mechanical Physics, Condensed Matter And Materials, Engineering Physics, Radiophysics
& Electronics

Chemistry

All Chemistry Advanced Chemical Engineering, Analytical Chemistry, Antimicrobial Resistance, Bio-organic Chem-
istry, Biochemistry, Biochemistry And Molecular Biology, Catalysis And Environmental Chemistry,
Chemical Biology, Chemical Engineering, Chemical Sciences, Digital Technologies Applied To Educa-
tion, Electrochemistry, Engineering Physics, Green Chemistry, Materials And Inorganic Chemistry,
Molecular And Cellular Biology, Molecular Biology And Genetics, Organic And Biological Chemistry,
Principles Of Biochemistry, Pure Chemistry, Zoology

Analytical Chemistry Advanced Chemical Engineering, Analytical Chemistry, Antimicrobial Resistance, Bio-organic Chem-
istry, Biochemistry And Molecular Biology, Chemical Biology, Chemical Engineering, Chemical
Sciences, Digital Technologies Applied To Education, Electrochemistry, Engineering Physics, Materials
And Inorganic Chemistry, Molecular And Cellular Biology, Molecular Biology And Genetics, Organic
And Biological Chemistry, Principles Of Biochemistry, Pure Chemistry

Materials Chemistry Analytical Chemistry, Bio-organic Chemistry, Biochemistry And Molecular Biology, Chemical Biology,
Chemical Engineering, Digital Technologies Applied To Education, Electrochemistry, Materials And
Inorganic Chemistry, Organic And Biological Chemistry

Catalysis Biochemistry, Biochemistry And Molecular Biology, Catalysis And Environmental Chemistry, Chemical
Biology, Chemical Engineering, Chemical Sciences, Digital Technologies Applied To Education,
Electrochemistry, Green Chemistry, Materials And Inorganic Chemistry, Principles Of Biochemistry,
Pure Chemistry

Physical Chemistry Advanced Chemical Engineering, Analytical Chemistry, Chemical Engineering, Chemical Sciences,
Digital Technologies Applied To Education, Materials And Inorganic Chemistry, Organic And Biological
Chemistry, Principles Of Biochemistry, Pure Chemistry

Organic Chemistry Analytical Chemistry, Bio-organic Chemistry, Biochemistry And Molecular Biology, Catalysis And
Environmental Chemistry, Chemical Biology, Chemical Engineering, Digital Technologies Applied To
Education, Electrochemistry, Materials And Inorganic Chemistry, Organic And Biological Chemistry,
Zoology

Nanotechnology / Nanochem-
istry

Analytical Chemistry, Biochemistry, Biochemistry And Molecular Biology, Catalysis And Environmental
Chemistry, Chemical Biology, Chemical Engineering, Digital Technologies Applied To Education,
Electrochemistry, Green Chemistry, Materials And Inorganic Chemistry, Organic And Biological
Chemistry, Principles Of Biochemistry, Pure Chemistry

Biochemistry Antimicrobial Resistance, Biochemistry, Electrochemistry, Molecular And Cellular Biology, Molecular
Biology And Genetics, Organic And Biological Chemistry, Principles Of Biochemistry, Pure Chemistry

Inorganic Chemistry Analytical Chemistry, Catalysis And Environmental Chemistry, Materials And Inorganic Chemistry

Environmental Chemistry Advanced Chemical Engineering, Analytical Chemistry, Chemical Engineering, Materials And Inorganic
Chemistry, Zoology

Polymer Chemistry Chemical Engineering, Digital Technologies Applied To Education, Materials And Inorganic Chemistry,
Organic And Biological Chemistry

Biology

All Biology Antimicrobial Resistance, Bio-organic Chemistry, Biochemistry, Biochemistry And Molecular Bi-
ology, Biological Engineering, Biological Sciences, Biomedical Engineering, Biomedical Sciences,
Biotechnology, Cell Biology, Chemical Biology, Chemical Engineering, Clinical Drug Development,
Developmental Biology, Ecology, Genetics, Green Chemistry, Immunology, Microbiology, Microbi-
ology And Cell Science, Molecular And Cellular Biology, Molecular Biology, Molecular Biology
And Genetics, Neurobiology And Behavior, Observational Oceanography, Physiology, Plant Sciences,
Research And Data Analysis, Software Engineering, Systems And Synthetic Biology, Taxonomy And
Biodiversity, Zoology

Microbiology Antimicrobial Resistance, Biochemistry, Biological Engineering, Biological Sciences, Biomedical
Engineering, Biomedical Sciences, Cell Biology, Chemical Engineering, Ecology, Microbiology,
Microbiology And Cell Science, Molecular And Cellular Biology, Molecular Biology And Genetics,
Neurobiology And Behavior, Software Engineering, Systems And Synthetic Biology, Taxonomy And
Biodiversity

Cancer Biology / Oncology Antimicrobial Resistance, Biochemistry, Biological Engineering, Biological Sciences, Biomedical
Engineering, Biomedical Sciences, Cell Biology, Chemical Engineering, Clinical Drug Development,
Genetics, Immunology, Microbiology And Cell Science, Molecular And Cellular Biology, Molecular
Biology, Molecular Biology And Genetics, Research And Data Analysis, Software Engineering,
Taxonomy And Biodiversity

Neuroscience / Neurobiology Antimicrobial Resistance, Biochemistry, Biological Engineering, Biomedical Engineering, Cell Biology,
Chemical Engineering, Clinical Drug Development, Developmental Biology, Genetics, Immunology,
Molecular And Cellular Biology, Molecular Biology, Molecular Biology And Genetics, Neurobiology
And Behavior, Physiology, Systems And Synthetic Biology

Ecology Biochemistry, Biological Engineering, Biological Sciences, Biomedical Engineering, Biomedical
Sciences, Cell Biology, Chemical Engineering, Ecology, Genetics, Microbiology, Microbiology And
Cell Science, Observational Oceanography, Plant Sciences, Research And Data Analysis, Systems And
Synthetic Biology, Taxonomy And Biodiversity

Immunology Bio-organic Chemistry, Biochemistry, Biological Engineering, Biomedical Engineering, Biomedical
Sciences, Chemical Engineering, Immunology, Microbiology And Cell Science, Software Engineering,
Systems And Synthetic Biology, Zoology
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Task Domain Subdomain Human Baseline Subfields

Molecular Biology Antimicrobial Resistance, Bio-organic Chemistry, Biochemistry, Biological Engineering, Biological
Sciences, Biomedical Engineering, Biomedical Sciences, Cell Biology, Chemical Engineering, Genetics,
Microbiology And Cell Science, Molecular And Cellular Biology, Molecular Biology, Molecular
Biology And Genetics, Research And Data Analysis, Software Engineering, Taxonomy And Biodiversity

Pharmacology / Toxicology Biochemistry, Biological Sciences, Biomedical Sciences, Cell Biology, Clinical Drug Development,
Genetics, Immunology, Microbiology And Cell Science, Observational Oceanography, Physiology,
Research And Data Analysis, Software Engineering

Plant Biology Biochemistry, Biological Sciences, Developmental Biology, Ecology, Genetics, Observational Oceanog-
raphy, Plant Sciences, Research And Data Analysis, Systems And Synthetic Biology, Taxonomy And
Biodiversity

Animal Behavior Biochemistry, Biological Sciences, Cell Biology, Clinical Drug Development, Developmental Biology,
Genetics, Microbiology, Molecular Biology, Observational Oceanography, Physiology, Systems And
Synthetic Biology, Taxonomy And Biodiversity, Zoology

Cell Biology Antimicrobial Resistance, Bio-organic Chemistry, Biochemistry, Biological Engineering, Biological
Sciences, Biomedical Engineering, Biomedical Sciences, Cell Biology, Chemical Engineering, Clinical
Drug Development, Developmental Biology, Genetics, Immunology, Microbiology And Cell Science,
Molecular And Cellular Biology, Molecular Biology, Molecular Biology And Genetics, Neurobiology
And Behavior, Physiology, Research And Data Analysis, Software Engineering, Taxonomy And
Biodiversity

Physiology Biochemistry, Biological Engineering, Biological Sciences, Biomedical Engineering, Biotechnology,
Cell Biology, Chemical Engineering, Clinical Drug Development, Genetics, Microbiology, Molecular
And Cellular Biology, Molecular Biology, Neurobiology And Behavior, Observational Oceanography,
Physiology, Plant Sciences, Systems And Synthetic Biology, Taxonomy And Biodiversity

Biochemistry Biochemistry, Biochemistry And Molecular Biology, Biological Engineering, Biomedical Engineering,
Cell Biology, Chemical Biology, Chemical Engineering, Clinical Drug Development, Genetics,
Molecular Biology, Physiology, Software Engineering, Zoology

Genetics Biochemistry, Biological Sciences, Biomedical Sciences, Cell Biology, Clinical Drug Development, Ge-
netics, Microbiology, Microbiology And Cell Science, Molecular Biology, Observational Oceanography,
Plant Sciences, Systems And Synthetic Biology, Taxonomy And Biodiversity

Bioengineering / Biomateri-
als

Antimicrobial Resistance, Biochemistry, Biological Sciences, Biomedical Sciences, Cell Biology, Green
Chemistry, Microbiology And Cell Science, Molecular And Cellular Biology, Molecular Biology,
Molecular Biology And Genetics, Observational Oceanography, Physiology, Systems And Synthetic
Biology
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Table 2: Task distribution by scientific subfield: number of tasks per Biology, Physics, and Chemistry subdomain.

Field Subfield Count

Physics Condensed Matter & Materials Physics 33
Materials Chemistry 17
Optics, Photonics & Laser Physics 16
High-Energy / Nuclear / Particle Physics 15
Applied & Instrumentation Physics 13
Quantum & Atomic Physics 10
Plasma & Nonlinear Physics 5
Biophysics 3
Mechanical / Energy / Thermo / Fluid Physics 2

Chemistry Analytical Chemistry 18
Materials Chemistry 17
Catalysis 16
Physical Chemistry 14
Organic Chemistry 13
Nanotechnology / Nanochemistry 10
Biochemistry 8
Inorganic Chemistry 6
Environmental Chemistry 4
Polymer Chemistry 3

Biology Microbiology 36
Cancer Biology / Oncology 28
Neuroscience / Neurobiology 19
Ecology 17
Immunology 16
Molecular Biology 14
Pharmacology / Toxicology 13
Plant Biology 13
Animal Behavior 13
Cell Biology 10
Physiology 9
Biochemistry 8
Genetics 8
Bioengineering / Biomaterials 3
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B. Example Data

B.1 Task examples

Physics: Free-Form Question

Paper Title: Compact Continuous Cold Atomic Beam from a Single Cell with 3D Cooling and Ultra-low Light Shift

Link to The Paper: https://arxiv.org/abs/2510.13126

Experimental Setup: Researchers investigated a compact single-cell source of a continuous cold-atom beam (87Rb) that achieves
simultaneous 3D cooling by integrating a two-dimensional magneto-optical trap (2D MOT) with an off-axis moving optical molasses
(OM). A vapor-cell apparatus (overall length ≈170 mm) provided transverse MOT cooling with circularly polarized beams detuned
by ΔMOT = -4Γ from the F = 2 → F’ = 3 D2 transition and a cylindrical quadrupole field (≈10 G cm−1), where Γ is the natural
linewidth. Longitudinal cooling and velocity control were realized with two pairs of lin⊥lin OM beams oriented 20° to the extraction
axis, detuned by ΔOM = -5Γ and symmetrically shifted by ±𝛿OM to set the mean atomic speed (≈5–20 m s−1) over an OM interaction
length lOM ≈ 50 mm. Custom in-vacuum mirrors formed the off-axis geometry and incorporated a 0.8 mm output aperture to
collimate the beam (cooling length lc ≈ 50 mm) while suppressing near-resonant stray light. The setup included permanent-magnet
field generation, state-preparation “plug” lasers 40 mm downstream for sharp time-of-flight (TOF) edges, and fluorescence
detection at 294 mm with a calibrated photomultiplier tube (PMT) to extract longitudinal temperature, velocity, and flux. For
coherence diagnostics, two 𝜋/2 Raman beams separated by L = 100 mm in a magnetically shielded region produced spatial-domain
Raman–Ramsey fringes, enabling quantification of decoherence and ultra-low light shift (typ. -0.51 Hz) under operating MOT power.

Measurements Taken:
- Time-of-flight (TOF) time series and distribution obtained from the emitted fluorescence from the atoms in F=2 state, collected
with imaging optics and recorded by a calibrated PMT at a primary detection distance of 294 mm.

Outcome Prediction Question: Researchers investigated the longitudinal temperature and atomic flux of a continuous cold 87Rb
beam using a time-of-flight (TOF) method. The temperature was extracted from the FWHM of the TOF distribution, while
the flux was obtained from the integrated spectral density. Based on measurements for a saturation intensity of 1.67 mW/cm2,
what outcome would researchers expect for the change in longitudinal temperature and atomic flux when the MOT power is increased?

Ground Truth Answer: Increasing MOT power raises the flux but affects the temperature only weakly.

Background Knowledge:
- Combining a 2D MOT with an off-axis moving OM yields a high-flux beam with significantly reduced longitudinal temperature
compared to conventional MOT-based sources.
- Continuous operation of cold-atom beam sources eliminates the dead time inherent to pulsed sources and thus suppresses aliasing
noise from undersampling.

Rubrics:
- Response states that increasing the magneto-optical trap power increases atomic flux.
- Response states that increasing the magneto-optical trap power has a little influence on temperature.
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Physics: Multiple-Choice Question

Paper Title: Ionization and temperature measurements in warm dense copper using x-ray absorption spectroscopy

Link to The Paper: https://arxiv.org/abs/2509.13272

Experimental Setup: Researchers investigated the ionization and temperature of warm dense copper (Cu) using X-ray absorption
spectroscopy (XAS) at the OMEGA Laser Facility to characterize plasmas at several times solid density. The experimental
configuration consists of a planar target and a separate backlighter positioned 3 mm away. A series of 60 laser beams, delivering
3.4–5.4 kJ per side of 351 nm light, and the achieved laser intensity is 161 - 770 TW/cm2 over the three pulse length configurations,
was symmetrically focused onto a planar buried-layer target composed of 125 µm CH ablators enclosing a 10 µm-thick Cu
foil (8.96 g/cm3 solid density) with a 500 µm diameter, surrounded by an Au washer. The laser spot (≈ 880 µm diameter)
was smoothed with distributed phase plates and spectral dispersion to generate uniform counter-propagating shocks. A 6
µm Ge backlighter foil, coated on graphite and irradiated with six additional beams (≈1.2 kJ, 500 ps pulse), is produced at
a spot diameter of 140 µm. The transmitted x-rays were recorded using the EFX flat-crystal spectrometer (Si 111) over the
6.3–11.4 keV range on an image plate with Mn, Fe, and W filters serving as fiducial markers. Shock timing and planarity,
as well as shock break-in and break-out of the Cu layer, were verified through a line-imaging VISAR system and a streaked
optical pyrometer (SOP) on one-sided targets, ensuring symmetric compression and precise backlighter synchronization. 3
VISAR measurement is done with 1 ns, 2 ns, or 3 ns square pulses using 14 beams per side, respectively. Each measurement
has two VISAR channels with different sensitivities; one leg was set with 33.66 µm/ns/fringe, and the second with 13.538 µm/ns/fringe.

Measurements Taken:
- Shock breakout times (in ns) and planarity were measured with the VISAR system.
- Shock velocity time history as a function of position across the target measured with the VISAR system.

Outcome Prediction Question: An investigation into shock breakout times and shock velocity time histories as a function of
position across the target of warm dense copper (Cu) plasma is conducted using a VISAR system. The experimental configuration
consists of a planar target and a separate backlighter positioned 3 mm away. A series of 60 laser beams was symmetrically focused
onto a planar buried-layer target surrounded by an Au washer. The laser spot was smoothed with distributed phase plates and
spectral dispersion to generate uniform counter-propagating shocks, compressing the Cu layer. A Ge backlighter foil, coated on
graphite and irradiated with six additional beams, is produced. The transmitted X-rays were also recorded using the EFX flat-crystal
spectrometer. Which behavior is most likely observed?
A. Shocks were non-planar over the target region, and warm dense copper shows Ionization Potential Depression (IPD).
B. Shocks were highly planar over the target region, and the absorption spectra of warm dense copper features blue shift of both the
K-edge and the bound-bound resonance 1s→3p absorption relative to the cold edge.
C. Shocks were highly planar over the target region, and the absorption spectra of warm dense copper features red shift of both the
K-edge and the bound-bound resonance 1s→3p absorption relative to the cold edge.
D. Shocks were highly planar over the target region, and the absorption spectra of warm dense copper features blue shift of the
K-edge relative to the cold edge, but no shift for the bound-bound resonance 1s→3p absorption.

Ground Truth Answer: B

Background Knowledge:
- Generating warm dense matter in the laboratory often involves significant temporal and spatial gradients that complicate the
analysis of experimental observables. Incorporating gradients in the analysis of experimental data, while possible, increases the
uncertainties in the inferred plasma conditions.
- At these high-density conditions, the measured Cu K-edge exhibits sensitivity to the electron temperature, allowing for a direct
inference of the temperature from the slope of the Cu K-edge.
- Temperature sensitivity of the K-edge can still be the dominant edge effect, in general, as the temperature nears the Fermi energy,
the K-edge shape of the non-degenerate material becomes unsuitable as a temperature inference.
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Physics: Numerical Value Question

Paper Title: A sub-volt near-IR lithium tantalate electro-optic modulator

Link to The Paper: https://arxiv.org/abs/2505.00906

Experimental Setup: Researchers fabricated a TFLT MZM operating at a near-IR wavelength of 737 nm. The fabricated unbalanced
MZM consists of a directional coupler as an input beamsplitter and a L = 5 mm long electrode in the ground-signal-ground
configuration, followed by another directional coupler at the output. Grating couplers are used to couple light on and off the chip to
near-IR single-mode fibers. The optical layer of the device is defined using 150 keV electron-beam lithography with 500 nm-thick
ma-N2405 resist on top of a 200 nm-thick x-cut TFLT-on-SiO2 layer. The waveguide width is designed to be 600 nm. The SiO2
layer is 2 µm-thick and is on a Si substrate. The TFLT is etched by 100 nm using an Ar+-based inductively coupled plasma reactive
ion etching. Etch-induced re-deposition is removed using a high-pH solution. The devices are then annealed in an O2 atmosphere at
520°C for 2 h to mitigate etch-induced imperfections. For the MZMs, an 800 nm-thick SiO2 cladding layer is then deposited by
plasma-enhanced chemical vapor deposition. The DC bias stability of two electro-optic Mach-Zehnder modulators is compared.
The first modulator is fabricated using thin-film lithium tantalate (TFLT), and the second, serving as a counterpart, is fabricated
with a similar process using thin-film lithium niobate (TFLN). For the test, each modulator is subjected to a constant on-chip
optical power of 4.3 dBm at a wavelength of 737 nm. A DC step voltage is applied to each device to set its operating point
at quadrature bias. The output optical power from the modulator is then monitored over 16 minutes in ambient conditions to
measure any drift from this bias point. To measure the DC bias stability of MZM over long timescales. First, it applied a 0.1
Hz-frequency square wave to the modulator using an on-chip optical power, and measured the modulator response with a photodetector.

Measurements Taken:
- The output optical power as a function of time over 16 minutes for the TFLT modulator.
- The output optical power as a function of time over 16 minutes for the TFLN modulator.
- The total DC bias drift, in decibels (dB), for the TFLT modulator.
- The total DC bias drift, in decibels (dB), for the TFLN modulator.

Outcome Prediction Question: An experiment compares the long-term stability of two Mach-Zehnder modulators, one made
from thin-film lithium tantalate (TFLT) and a counterpart from thin-film lithium niobate (TFLN). Both are operated with 4.3
dBm of on-chip optical power at 737 nm and biased at quadrature. The output power is monitored for 16 minutes to quantify
the DC bias drift. To measure the DC bias stability of MZM over long timescales. First, it applied a 0.1 Hz-frequency square
wave to the modulator using an on-chip optical power, and measured the modulator response with a photodetector. Based on
the experimental results, what is the total measured DC bias drift, in decibels (dB), for the thin-film lithium niobate (TFLN) modulator?

Ground Truth Answer: ΔDC bias drift = [7.2–8.8] dB at 16 min for the TFLN modulator operated at 4.3 dBm optical power (737
nm). No CI/SE/SD reported → fallback ±0.8 dB applied.

Background Knowledge:
- In particular, the relaxation rate will increase with more applied optical power and can be exacerbated with applied DC or RF field.
This effect reduces the DC stability of electro-optic circuits, such as Mach-Zehnder modulators (MZMs), and has been one of the
main challenges faced by TFLN photonics
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Biology: Free-Form Question

Paper Title: Dopamine induces fear extinction by activating the reward-responding amygdala neurons

Link to The Paper: https://pmc.ncbi.nlm.nih.gov/articles/PMC12067255/

Experimental Setup: Researchers tested whether ventral tegmental area (VTA) dopamine signaling in the basolateral amygdala
(BLA) drives fear extinction by acting on reward-responding posterior BLA (pBLA) neurons versus fear-coding anterior
BLA (aBLA) neurons, using adult mice (DAT-IRES-Cre; EYFP controls; subtype mapping with Rspo2-Cre for aBLA and
Ppp1r1b/Cartpt-Cre for pBLA). DAT-Cre mice received bilateral VTA injections of Cre-dependent ChR2-EYFP (activation) or
eNpHR3.0-EYFP (inhibition); controls received EYFP; optic fibers were implanted over pBLA or aBLA to manipulate VTA→BLA
terminals. Training: Day 1 contextual fear conditioning (baseline ~3 min, then 3 footshocks, 0.60 mA, 2 s); Day 2 45-min extinction
(no shocks); Day 3 10-min retrieval. Intervention (extinction only): starting 5 min into extinction, deliver 8 cycles of 3-min light
separated by 2-min no-light (activation: blue 450–470 nm, 8–12 mW, 20 Hz pulses; inhibition: green 520–550 nm, 8–12 mW,
continuous) with fibers targeted to pBLA or aBLA. Behavior videos were recorded with VideoFreeze software and freezing level
was scored manually by experimenters who were blinded to conditions or automatically with DeepLabCut behavior analysis toolbox
and custom Python code (68). Freezing was quantified in 5-min bins across extinction and again during retrieval.

Measurements Taken:
- Extinction learning: Percent freezing per 5-min bin across the 45-min Day 2 session (9 bins). Scored manually by experimenters
who were blinded to conditions or automatically with DeepLabCut behavior analysis toolbox and custom Python code (68).
- Extinction memory: Percent freezing during the Day 3 retrieval test (10 min). Scored manually by experimenters who were
blinded to conditions or automatically with DeepLabCut behavior analysis toolbox and custom Python code (68).

Outcome Prediction Question: Mice underwent contextual fear conditioning (Day 1: context + three 0.60 mA, 2 s shocks), 45-min
extinction (Day 2, no shocks), and 10-min retrieval (Day 3). During extinction, VTA dopamine terminals in pBLA (Ppp1r1b+) or
aBLA (Rspo2+) were optogenetically manipulated beginning 5 min into the session using 8 cycles of 3 min light separated by 2 min:
activation (blue 450–470 nm, 8–12 mW, 20 Hz) or inhibition (green 520–550 nm, 8–12 mW, constant). Freezing was binned in
5-min windows across extinction and measured again at retrieval. How do these projection-specific manipulations (activation and
inhibition of VTA dopamine terminals in the pBLA and in aBLA) affect fear extinction and retrieval compared with EYFP controls?

Ground Truth Answer: Activation of VTA dopamine terminals in the pBLA promotes faster extinction and improved retrieval,
indicating an enhancement of extinction learning. In contrast, inhibition of pBLA dopamine input impairs both extinction and
retrieval. Activation of VTA terminals in the aBLA leads to increased freezing later in extinction and poorer retrieval performance,
suggesting interference with extinction memory formation, while inhibition of aBLA terminals produces no reliable behavioral change.

Background Knowledge:
- Fear extinction is a form of new learning that allows for the adaptive control of fear behaviors and is commonly studied using
Pavlovian conditioning tasks.
- aBLA Rspo+ neurons encode negative valence and drive aversive behaviors whereas pBLA Ppp1r1b+ neurons encode positive
valence and drive appetitive behaviors.
- VTA dopamine as a teaching signal: DA activity to shock omission can initiate extinction learning and is required for extinction.
- Terminal activation (ChR2, blue, pulsed) vs inhibition (eNpHR3.0, green, constant) at BLA terminals tests sufficiency/necessity of
VTA→BLA pathways.
- Freezing is the behavioral measure; decreases across 5-minute bins and at retrieval indicate successful extinction.

Rubrics:
- The response should state that activation of ventral tegmental area dopamine terminals in the posterior basolateral amygdala of
adult mice promotes faster extinction compared to control. Use of acronyms such as VTA or pBLA are acceptable.
- The response should state that activation of ventral tegmental area dopamine terminals in the posterior basolateral amygdala of
adult mice improves retrieval compared to control. Use of acronyms such as VTA or pBLA are acceptable.
- The response should state that inhibition of ventral tegmental area dopamine terminals in the posterior basolateral amygdala of
adult mice impairs extinction compared to control. Use of acronyms such as VTA or pBLA are acceptable.
- The response should state that inhibition of ventral tegmental area dopamine terminals in the posterior basolateral amygdala of
adult mice impairs retrieval compared to control. Use of acronyms such as VTA or pBLA are acceptable.
- The response should state that activation of ventral tegmental area terminals in the anterior basolateral amygdala of adult mice
leads to increased freezing later in extinction compared to control. Use of acronyms such as VTA or aBLA are acceptable.
- The response should state that activation of ventral tegmental area terminals in the anterior basolateral amygdala of adult mice
leads to poorer retrieval performance compared to control. Use of acronyms such as VTA or aBLA are acceptable.
- The response should state that inhibition of ventral tegmental area terminals in the anterior basolateral amygdala of adult mice
produces no reliable behavioral change compared to control. Use of acronyms such as VTA or aBLA are acceptable.
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Biology: Multiple-Choice Question

Paper Title: Social Tolerance and Innovation in Capuchins: socially more tolerant brown capuchins are better problem-solvers than
less tolerant white-faced capuchins

Link to The Paper: https://www.biorxiv.org/content/10.1101/2025.09.05.674457v1.full

Experimental Setup: Researchers tested three groups of white-faced capuchins (Cebus capucinus)(n = 23 individuals in total) and
three groups of brown capuchins (Sapajus apella) (n = 20 individuals in total) to explore and compare the relationship between
social tolerance and problem-solving propensities. To measure social tolerance, they prepared an area of 1 m2 per five animals in
the group, in which they distributed apple pieces and measured the proportion of individuals within the co-feeding area at each scan
sample. To measure problem-solving propensities, they designed three versions of novel extractive foraging devices requiring one to
three steps to acquire the food reward. For the first puzzle, animals had to rotate a door to either the left or right to access a hidden
reward (1/24 of an apple) by reaching into a box. For the second puzzle, animals had to pull on a chain reaching out of a box, which
moved a blockade out of the way so that they could push in a door and reach into the box. For the third puzzle, animals had to pull a
metal rod blocking a slider that had to be pulled upwards and held in position to reach into the box and then pull on a chain to access
the hidden reward. Researchers analyzed the approaching, exploring, and solving behaviour separately.

Measurements Taken:
- Proportion of individuals within the co-feeding area at each scan sample (social tolerance)
- Proportion of individuals within the puzzle area at each scan sample (social tolerance)
- Number of approaches to a food puzzle area
- Approaching a food puzzle area duration
- Approaches to a food puzzle area latency
- Number of exploration events (touch, sniff, interact) during the approaches to a food puzzle area
- Number of times the capuchins successfully solved the puzzles
- Exploration of food puzzle events latency
- Time to solve a puzzle

Outcome Prediction Question: Researchers tested three groups of white-faced capuchins (Cebus capucinus) and three groups of
brown capuchins (Sapajus apella) to explore and compare the relationship between social tolerance and problem-solving propensities.
To measure social tolerance, they prepared an area of 1 m2 per five animals in the group, in which they distributed apple pieces and
measured the proportion of individuals within the co-feeding area at each scan sample. To measure problem-solving propensities,
they designed three versions of novel extractive foraging devices requiring one to three steps to acquire the food reward. Which of
the following outcomes is most likely?
A. Both species should show the same levels of social tolerance and problem-solving propensities.
B. White-faced capuchins should show the highest level of social tolerance and problem-solving propensities.
C. White-faced capuchins should show the lowest level of social tolerance and problem-solving propensities.
D. White-faced capuchins should show the highest level of social tolerance and the lowest level of problem-solving propensities.

Ground Truth Answer: C

Background Knowledge:
- Social tolerance has increasingly been linked to the facilitation of social learning across a variety of species, including chimpanzees,
orangutans, macaques, capuchin monkeys, lemurs, and birds.
- White-faced capuchins (Cebus capucinus) and brown capuchins (Sapajus apella) exhibit a diverse array of traditions.
- White-faced capuchins (Cebus capucinus) are less known for using tools (but see Barrett et al., 2018), but they regularly engage in
object use (Boinski, 1988).
- Robust capuchins (Sapajus spp.) have fewer documented social traditions but exhibit a wide range of foraging traditions, including
tool-use, and show notable social tolerance in these contexts, tolerating close proximity of conspecifics.
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Biology: Numerical Value Question

Paper Title: GsMTx4-loaded GelMA promotes tendon regeneration and suppresses heterotopic ossification via the
Apelin signaling pathway

Link to The Paper: https://www.sciencedirect.com/science/article/pii/S0142961225004260?via%3Dihub

Experimental Setup: Researchers employed Male Sprague Dawley (SD) rats (10–12 weeks old, weighing 250–300 g)
as animal model for studying tendon repair and regeneration. A central defect (1 mm in width and 5 mm in length) was
created in the Achilles tendon using two parallel No.15 surgical blades. Subsequently, the skin was sutured using 4-0
Vicryl sutures. The rats received temgesic (0.3 mg/kg of body weight) for three consecutive days following the surgery
to manage pain. The rats were randomly assigned to one of four groups: Achilles tendon defect (ATD) (no treatment),
GelMA, GelMA + 50 µg GsMTx4, GelMA + 100 µg GsMTx4. At the time of injury, a mixture of GelMA and LAP
(Lithium Phenyl-2,4,6-Trimethylbenzoylphosphinate) (20 µl), loaded with 50 or 100 µg GsMTx4 where appropriate,
was placed within the ATD of treated animals and transformed into the gel state with a blue light source (3 W, 405 nm)
for 30 s at a distance of 2 cm from the defect. These animals were euthanized at 2, 4, and 8 weeks post-treatment,
with six rats per group per time point. The harvested Achilles tendons were fixed in 4% paraformaldehyde at room
temperature for 24 h. Following fixation, the samples were rinsed with running water and dehydrated with an ethanol
gradient, and embedded in paraffin. The blocks were sectioned at 5 µm thickness using a microtome and stained with
Hematoxylin and Eosin (H&E). Semi-quantitative analysis of H&E staining results was conducted according to the
modified Bonar score.

Measurements Taken:
- Histologic Bonar Score (ATD, GelMA, GelMA + 50 µg GsMTx4, GelMA + 100 µg GsMTx4): 2 weeks; 4 weeks; 8
weeks.

Outcome Prediction Question: Researchers employed Male Sprague Dawley (SD) rats (10–12 weeks old, weighing
250–300 g) as animal model for studying tendon repair and regeneration. A central defect (1 mm in width and 5 mm in
length) was created in the Achilles tendon using two parallel No.15 surgical blades. The rats were randomly assigned
to one of four groups: Achilles tendon defect (ATD) (no treatment), GelMA, GelMA + 50 µg GsMTx4, GelMA + 100
µg GsMTx4. At the time of injury, a mixture of GelMA and LAP (Lithium Phenyl-2,4,6-Trimethylbenzoylphosphinate)
(20 µl), loaded with 50 or 100 µg GsMTx4 where appropriate, was placed within the ATD of treated animals and
transformed into the gel state with a blue light source. The animals were euthanized at 2, 4, and 8 weeks post-treatment.
The harvested Achilles tendons were embedded in paraffin, sectioned using a microtome, and stained with Hematoxylin
and Eosin (H&E). Semi-quantitative analysis of H&E staining results was conducted according to the modified Bonar
score (BS). Based on the reported values of the BS for Achilles tendon repair and regeneration, what is the predicted
difference of the BS (in points) between the GelMA and the GelMA + 100 µg GsMTx4 groups 8-weeks post treatment?

Ground Truth Answer: Δ BS (GelMA - GelMA + 100 µg GsMTx4) 8-weeks post treatment = 4 - 6 points; derived
from BS GelMA 8-weeks post treatment = ~9 points, BS GelMA + 100 µg GsMTx4 8-weeks post treatment = ~4
points. Note: No CI/SE/SD reported -> fallback ± 10% units (rounded) applied.

Background Knowledge:
- Tendon regeneration is highly relied on the surrounding mechanical environment.
- Studies have demonstrated the importance of Piezo1 in modulating cellular behaviors to mechanical cues, such as cell
migration, differentiation, proliferation, and extracellular matrix synthesis.
- GelMA hydrogel demonstrates excellent biocompatibility and sustained release properties.
- The mechanosensitive ion channel Piezo1 is inhibited by the peptide GsMTx4
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Chemistry: Free-Form Question

Paper Title: An investigation of the physical and chemical changes of Pd nanoparticles on carbon supports in response
to the release of hydrogen from aqueous formate solutions

Link to The Paper: https://chemrxiv.org/engage/chemrxiv/article-details/68d16d29f2aff16770fa93bd

Experimental Setup: Researchers prepared and analyzed Pd nanoparticles supported on carbon materials to examine
their structural and chemical evolution during hydrogen release from aqueous sodium formate. Three supports
were used: carbon black (Vulcan XC-72), nitrogen-doped carbon (NC), and graphitic carbon nitride (g-C3N4).
Nitrogen-doped carbon was obtained by heating a melamine–carbon black mixture at 700 °C under nitrogen, while
g-C3N4 was synthesized by heating urea at 500 °C in air. Pd catalysts were produced by reducing H2PdCl4 with
NaBH4 in trisodium citrate solution at 25 °C, yielding a 1 wt% Pd loading. The product was filtered, washed, and
dried at 85 °C for 24 h, and selected samples were calcined at 250 °C for 3 h in air. Structural and compositional
analyses included inductively coupled plasma–optical emission spectrometry (PerkinElmer 7300 DV) to determine
Pd content, X-ray diffraction (Rigaku SmartLab SE, Cu K𝛼, 2Θ = 2–100°) to assess crystallinity, and nitrogen
physisorption (Micromeritics ASAP 2020) using BET and BJH models to measure surface area and pore volume.
Pd dispersion was quantified by CO chemisorption (Micromeritics ASAP 2020C, 30 °C, pre-reduced at 100 °C
for 0.5 h), and nanoparticle morphology was examined by aberration-corrected scanning transmission electron
microscopy (Thermo Fisher Themis Z, 300 kV). Catalytic performance was tested in a 50 mL batch reactor containing
250 mg of catalyst and 10 mL of 1 M sodium formate at 65 °C under N2 with stirring at 500 rpm for 2 h, where
gas evolution was monitored by pressure change and analyzed using a micro-gas chromatograph. In-situ X-ray
absorption spectroscopy was performed at the Stanford Synchrotron Radiation Lightsource beamline 4-1 to monitor
Pd oxidation states during reaction using Pd K-edge XANES and EXAFS scans (24126–25238 eV, 0.5 × 4 mm
beam). Catalyst reuse tests were carried out by recovering the solid after reaction, washing with deionized water,
drying at 80 °C, and re-calcining at 180 or 250 °C for 3 h when required. All synthesis, characterization, and
catalytic experiments were conducted under controlled temperature and atmospheric conditions to ensure reproducibility.

Measurements Taken:
- Pd oxidation state and local atomic structure characterized by in-situ X-ray Absorption Spectroscopy (XAS, SSRL
beamline 4-1) with Pd K-edge XANES and EXAFS scans (24126–25238 eV, beam size 0.5 × 4 mm) under reaction
conditions.
- Palladium loading (wt%) measured using Inductively Coupled Plasma–Optical Emission Spectroscopy (ICP-OES,
PerkinElmer 7300 DV) to quantify Pd content on carbon supports.

Outcome Prediction Question: Palladium nanoparticles supported on carbon materials were assessed as catalysts for
hydrogen release from aqueous sodium formate. Three supports- carbon black (Vulcan XC-72), nitrogen-doped carbon
(NC), and graphitic carbon nitride (g-C3N4)- were employed, with NC synthesized by heating a melamine-carbon
black mixture at 700 °C under N2 and g-C3N4 prepared by urea pyrolysis at 500 °C in air. Pd catalysts (1 wt%)
were obtained by reducing H2PdCl4 with NaBH4 in trisodium citrate at 25 °C, followed by drying and optional
calcination at 250 °C. Structural and chemical characterization included ICP–OES for Pd content, XRD for
crystallinity, N2 physisorption for surface area, CO chemisorption for Pd dispersion, and STEM for nanoparticle
morphology. Catalytic performance was evaluated in a batch reactor (65 °C, 1 M sodium formate) by monitoring
gas evolution and composition via micro-GC. In-situ XANES/EXAFS at the Pd K-edge tracked oxidation-state
changes during reaction, and reuse tests examined catalyst stability following washing and re-calcination. What will
in-situ XANES analysis reveal about the role of palladium oxide (PdO) as an active catalyst for formate dehydrogenation?

Ground Truth Answer: In-situ XANES experiments unambiguously demonstrate that PdO is rapidly reduced to
metallic Pd and then forms Pd hydride upon exposure to a formate solution, showing that PdO does not play a direct
role in the mechanism of H2 formation.

Background Knowledge:
- Palladium nanoparticles on carbon supports (Pd/C) are effective for catalyzing hydrogen release from aqueous formate
solutions but typically suffer from a gradual decrease of activity.
- Nitrogen doping of carbon supports is observed to enhance the rates of hydrogen release from aqueous formate solutions

Rubrics: The response must state that palladium oxide (PdO) does not play a direct role as the active catalyst in the
mechanism of H2 formation.
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Chemistry: Multiple-Choice Question

Paper Title: Lab-Scale Thermal Decomposition of Hydrogen Peroxide as Green Propellant over Low-Cost Catalysts
Based on Copper Deposited on Different Supports

Link to The Paper: https://www.mdpi.com/2226-4310/12/5/440

Experimental Setup: Researchers investigate the thermal degradation of the H2O2 green monopropellant. Three
distinct catalysts—copper supported on 𝛾-alumina, graphite, and MNC clay—were used. Conversely, a LABSYS
evo-gasorption apparatus (Category: DTA/TG/DSC, Model: Setaram Instrumentation) was used to perform differential
thermal analysis– thermogravimetry (DTA–TG) measurements in order to investigate the thermal breakdown of H2O2
at constant atmospheric pressure (p = 1 atm). A syringe was used to inject a 30% (w/w) H2O2 microdroplet into
the metallic sample cell. It was investigated how the three different catalysts affected the H2O2 thermogram. A
microdroplet of liquid H2O2 was combined with a modest amount (a few micrograms) of powdered catalyst in the
aluminum sample cell for each thermal study. Before each run, the following experimental conditions were maintained:
(i) Carrier gas: argon, with a flow rate of 50 mL·min−1;
(ii) Heating rate: 10 °C·min−1, from room temperature up to 250 °C;
(iii) The H2O2 droplet was added directly to the catalyst particles already placed in the aluminum cell. After sealing
the apparatus, a stabilization period of approximately 2 min was allowed for the system (carrier gas and sample) to
equilibrate. The thermal run was then initiated to record the DTA–TG thermograms.
Experiments were run at two constant temperatures: 0 °C and 36 °C

Measurements Taken:
- Differential pressure (ΔP, in kPa) vs time (minutes) was recorded.
- ΔP for each catalyst (Cu/𝛾-alumina, Cu/graphite, Cu/clay) compared to the uncatalyzed control.
- ΔP at 0 °C and 36 °C to assess temperature effects on decomposition rate.

Outcome Prediction Question: Which of the following statements best describes the observed catalytic activity (as
measured by differential pressure, ΔP, vs time) for the decomposition of 30 % H2O2 over the three copper-supported
catalysts (Cu/𝛾-alumina, Cu/graphite, Cu/clay) compared to the uncatalyzed decomposition, at 36 °C and 0 °C?
A. At both temperatures all three catalysts produce rates almost identical to each other; the rates follow a similar trend,
with 0°C just being slower than 36 °C, each gives a large increase over the uncatalyzed reaction at both temperatures.
B. At 0°C all three catalysts give a similar rate, none of them is clearly faster than another, but at 36 °C Cu/𝛾-alumina
gives the highest rate (largest ΔP increase), followed by Cu/graphite, then Cu/clay, each significantly faster than
uncatalyzed at both temperatures.
C. At 0 °C, Cu/clay a rate that is slower than the uncatalyzed reaction at the beginning, then becomes faster than the
uncatalyzed reaction, while Cu/graphite, and Cu/𝛾-alumina have a similar rate and are higher than the uncatalyzed
reaction. At 36 °C all three are faster than uncatalyzed reaction, Cu/𝛾-alumina is the fastest, closely followed by
Cu/graphite, then Cu/clay.
D. At 0 °C all three catalysts begin slightly faster than the uncatalyzed reaction then all three become much faster, the
variability being larger than the difference between the catalysts. At 36 °C the reaction with all three catalysts is much
faster than the uncatalyzed reaction, with Cu/𝛾-alumina being much faster than Cu/graphite, then Cu/clay lags because
the copper particles came off the support particles.

Ground Truth Answer: C

Background Knowledge:
- As the world increasingly focuses on sustainable and environmentally friendly solutions, there is a growing interest in
exploring greener alternative propellants that offer comparable performance while mitigating the drawbacks associated
with hydrazine and its derivatives.
- The thermal decomposition of hydrogen peroxide (H2O2) as a promising green propellant was performed over
free-noble metallic-based catalysts deposited on abundant supports.
- Green monopropellants have the potential for long-term cost savings due to reduced safety measures, disposal costs,
and regulatory compliance requirements associated with hazardous materials such as hydrazine.
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Chemistry: Numerical Value Question

Paper Title: Time-resolved photo-electrochemical measurements to study band bending of BiVO4 photoanodes

Link to The Paper: https://chemrxiv.org/engage/chemrxiv/article-details/68b1a2e2728bf9025e19a17e?

Experimental Setup: Thin-film BiVO4 photoanodes were investigated in a three-electrode photo-electrochemical
RRDE cell under chopped AM 1.5G illumination. Light switch-ON/OFF transients were recorded over 0–2.5 V
vs RHE, and the disk photocurrent during switch-ON was fit with exponentials to isolate the fast space-charge
reorganization time constant (𝜏_fast) (along with slower components).

Measurements Taken:
- Disk photocurrent transients** at light switch-ON/OFF (current vs time) across 0–2.5 V vs RHE.
- Exponential fits of transients to extract characteristic time constants (including 𝜏_fast) in seconds; report the average
𝜏_fast (switch-ON) over the potential window.
- Steady-state J–E curves** under illumination.
- RRDE ring current** (Pt ring) vs time/potential for O2 detection/validation.
- Assignment of 𝜏_fast to space-charge reorganization based on transient behavior.

Outcome Prediction Question: Thin-film BiVO4 photoanodes were tested in a three-electrode photo-electrochemical
RRDE cell under chopped AM 1.5G illumination. During light “switch-ON” steps over 0–2.5 V vs RHE, the disk
photocurrent transients were fit with exponentials to isolate the fast space-charge reorganization process (𝜏_fast). At
these conditions, what is the average value of 𝜏_fast in seconds (s) for the switch-ON process?

Ground Truth Answer: 0.0022±0.002 s.

Background Knowledge:
- BiVO4 is a semiconductor photoanode used for oxygen evolution under illumination; its behavior is probed in a
three-electrode photoelectrochemical cell.
- Band bending at the semiconductor/electrolyte interface creates a space-charge region that governs carrier separation
and the early transient response.
- Time-resolved photoelectrochemistry with chopped AM 1.5G illumination measures photocurrent transients at light
on/off to extract characteristic time constants.
- A rotating ring–disk electrode (RRDE) uses a Pt ring to detect dissolved O2 produced at the disk, distinguishing disk
photocurrent from ring current.
- The flat-band potential is the potential where band bending vanishes and is estimated from cyclic-voltammetry
features; potentials are reported vs RHE.
- Exponential fitting of transients yields 𝜏_fast and slower components that reflect interfacial charge reorganization and
reaction kinetics.
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B.2 Example human responses

Physics: Numerical Value Question

Paper Title: Recent Highlights from the STAR Experiment

Link to The Paper: https://arxiv.org/abs/2508.08444

Experimental Setup: Researchers investigated the Beam Energy Scan-II (BES-II) program at the STAR experiment,
which was used to measure net-proton cumulant ratios in Gold-on-Gold (Au+Au) collisions at various center-of-mass
energies (from 7.7 to 27 GeV) in the Fixed-Target mode. BES-II employed a new centrality definition, RefMult3X,
corresponding to pseudorapidity acceptances fulfilling |𝜂| < 1.6. The Time-Projection Chamber (TPC) for low
transverse momentum (0.4 < pT < 0.8 GeV/c) and the Time-Of-Flight (TOF) detector for greater transverse momentum
(0.8 < pT < 2.0 GeV/c) were used to identify protons and anti-protons. Only particles falling within the speed window
of |y| < 0.5 were included in the analysis. The most central collisions (0-5% centrality class) were the focus of the
measurements, which were methodically adjusted for experimental variables such detector efficiency, event pile-up,
and centrality bin width.

Measurements Taken:
- Net-proton cumulants (C1, C2, C3, C4) as a function of collision centrality and collision energy.
- The relative dynamical correlation of transverse momentum as a function of collision energy.

Outcome Prediction Question: In the STAR experiment’s Beam Energy Scan-II (BES-II), what was the measured
value of the net-proton cumulant ratio C4/C2 at the collision energy of 19.6 GeV for the 0-5% centrality class?

Ground Truth Answer: [0.25-0.40]
Note: The range is informed graphically in Figure 3. The range was estimated by the pixel coordinates of the error bars
and axis ticks.

Background Knowledge:
- The upgrades done to STAR for BES-II enabled a new centrality definition, RefMult3X, which achieves better
centrality resolution due to larger multiplicity within the acceptance.
- Experimentally measured proton multiplicity distributions are described by the central moments, which depend on the
cumulants. In particular, the second cumulant C2 is the variance 𝜎2, and the ratio between the fourth and second
cumulant, C4/C2, is 𝜅𝜎2, where 𝜅 is the kurtosis.
- When there are no intrinsic correlations among the measured particles, all ratios of the cumulants are unity, so
Poisson statistics is a trivial baseline for experimentally measured cumulant ratios.
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Human Responses

Answer (NBK): The measured value of the net-proton cumulant ratio C4/C2 at the collision energy of 19.6 GeV for
the 0-5% centrality class is 0.4.

Reasoning (NBK): Theoretically, the ratio of the fourth- to the second-order net-proton cumulant (C4/C2) is often
called the moment product 𝜅𝜎2. Here, 𝜅 is the kurtosis and 𝜎2 is the variance. The theoretical Poisson baseline for
net-proton cumulant ratios is unity or 1. Hence, the measured value must be ≤ 1.
Additionally, various previous experiments support the fact that the C4/C2 value is close to unity for all collision
energies for the smallest rapidity acceptance, and for higher collision energies. For example, according to Adam et al.
(2021), during the BES-I experiment of the STAR detector at RHIC, the mean C4/C2 ratio in the 0-5% bin is ~0.4.
This result is also supported by Bleicher et. al. (1999) during the Ultra-Relativistic Quantum Molecular Dynamics
(UrQMD) experiment.

Confidence (NBK): Somewhat confident in your answer

Difficulty (NBK): Easy to answer

Answer (BK): The measured value of the net-proton cumulant ratio C4/C2 at the collision energy of 19.6 GeV for the
0-5% centrality class is 0.4.

Reasoning (BK): Theoretically, the ratio of the fourth- to the second-order net-proton cumulant (C4/C2) is often called
the moment product 𝜅𝜎2. Here, 𝜅 is the kurtosis and 𝜎2 is the variance. The theoretical Poisson baseline for net-proton
cumulant ratios is unity or 1. Hence, the measured value must be ≤ 1.
Additionally, various previous experiments support the fact that the C4/C2 value is close to unity for all collision
energies for the smallest rapidity acceptance, and for higher collision energies. For example, according to Adam et al.
(2021), during the BES-I experiment of the STAR detector at RHIC, the mean C4/C2 ratio in the 0-5% bin is ~0.4
[Figure 8]. This result is also supported by Bleicher et. al. (1999) during the Ultra-Relativistic Quantum Molecular
Dynamics (UrQMD) experiment [Figures 6 and 30].

Confidence (BK): Somewhat confident in your answer

Difficulty (BK): Easy to answer

Feasibility: Very feasible to answer without running the experiment

Feasibility Reasoning: Theoretically, the ratio of the fourth- to the second-order net-proton cumulant (C4/C2) is often
called the moment product 𝜅𝜎2. Here, 𝜅 is the kurtosis and 𝜎2 is the variance. The theoretical Poisson baseline for
net-proton cumulant ratios is unity or 1. Hence, the measured value must be ≤ 1, which can be directly concluded from
the known theory on this topic.
Additionally, various previous experiments support the fact that the C4/C2 value is close to unity for all collision
energies for the smallest rapidity acceptance, and for higher collision energies. For example, according to Adam et al.
(2021), during the BES-I experiment of the STAR detector at RHIC, the mean C4/C2 ratio in the 0-5% bin is ~0.4
[Figure 8]. This result is also supported by Bleicher et. al. (1999) during the Ultra-Relativistic Quantum Molecular
Dynamics (UrQMD) experiment [Figures 6 and 30].
Hence, using the existing literature on previously performed experiments, the measured value of C4/C2 can be logically
estimated for the BES-II experiment of the STAR detector at RHIC.
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C. Additional Results

Table 3: Different versions of Gemini, OpenAI, Claude Sonnet, Llama, Qwen, and Deepseek evaluated on Chemistry, Biology,
Physics, and all domains. Best values within each family are highlighted. Conf. := Confidence Score; Diff. := Difficulty Level;
Feas. := Feasibility Score.

Model Experimental
Setup

Chemistry Biology Physics All Domains

Accuracy (%) Calibration (1-5) Accuracy (%) Calibration (1-5) Accuracy (%) Calibration (1-5) Accuracy (%) Calibration (1-5)

Conf. Diff. Feas. Conf. Diff. Feas. Conf. Diff. Feas. Conf. Diff. Feas.

Gemini 3-pro

NBK 26.14 ± 5.40 4.37 ± 0.01 3.56 ± 0.03 3.55 ± 0.04 24.47 ± 1.24 4.38 ± 0.02 3.44 ± 0.01 3.55 ± 0.09 26.00 ± 0.00 4.56 ± 0.02 3.39 ± 0.01 3.71 ± 0.10 25.27 ± 1.92 4.42 ± 0.01 3.46 ± 0.01 3.59 ± 0.06

BK 28.43 ± 0.98 4.39 ± 0.03 3.52 ± 0.02 3.50 ± 0.07 27.26 ± 0.75 4.39 ± 0.02 3.40 ± 0.07 3.59 ± 0.03 26.33 ± 2.08 4.56 ± 0.01 3.25 ± 0.06 3.89 ± 0.06 27.33 ± 0.79 4.43 ± 0.01 3.40 ± 0.04 3.64 ± 0.02
SBK 28.43 ± 0.00 4.43 ± 0.00 3.45 ± 0.00 3.71 ± 0.00 26.11 ± 0.00 4.45 ± 0.00 3.19 ± 0.00 3.89 ± 0.00 21.00 ± 0.00 4.63 ± 0.00 3.24 ± 0.00 4.00 ± 0.00 25.43 ± 0.00 4.49 ± 0.00 3.27 ± 0.00 3.87 ± 0.00
SABK 30.39 ± 0.00 4.48 ± 0.00 3.42 ± 0.00 3.79 ± 0.00 25.12 ± 0.00 4.44 ± 0.00 3.20 ± 0.00 3.78 ± 0.00 27.00 ± 0.00 4.68 ± 0.00 3.14 ± 0.00 4.01 ± 0.00 26.91 ± 0.00 4.51 ± 0.00 3.24 ± 0.00 3.84 ± 0.00
FBK 25.49 ± 0.00 4.35 ± 0.00 3.53 ± 0.00 3.47 ± 0.00 24.63 ± 0.00 4.32 ± 0.00 3.49 ± 0.00 3.35 ± 0.00 23.00 ± 0.00 4.63 ± 0.00 3.32 ± 0.00 3.75 ± 0.00 24.44 ± 0.00 4.40 ± 0.00 3.46 ± 0.00 3.48 ± 0.00

Claude Opus 4.5

NBK 15.69 ± 0.98 3.19 ± 0.08 4.04 ± 0.03 2.78 ± 0.08 25.12 ± 0.49 3.30 ± 0.04 3.98 ± 0.02 2.92 ± 0.04 26.33 ± 2.08 3.48 ± 0.03 4.01 ± 0.02 3.17 ± 0.06 23.05 ± 0.51 3.32 ± 0.04 4.00 ± 0.02 2.95 ± 0.01

BK 22.88 ± 1.50 3.20 ± 0.01 4.03 ± 0.01 2.85 ± 0.06 27.09 ± 0.85 3.38 ± 0.02 3.92 ± 0.05 3.00 ± 0.01 32.33 ± 2.08 3.51 ± 0.04 3.93 ± 0.04 3.14 ± 0.03 27.33 ± 0.75 3.37 ± 0.02 3.95 ± 0.03 3.00 ± 0.01
SBK 17.65 ± 0.00 3.27 ± 0.00 4.01 ± 0.00 2.86 ± 0.00 27.00 ± 0.00 3.46 ± 0.00 3.81 ± 0.00 3.12 ± 0.00 29.00 ± 0.00 3.51 ± 0.00 3.90 ± 0.00 3.23 ± 0.00 25.14 ± 0.00 3.43 ± 0.00 3.88 ± 0.00 3.08 ± 0.00
SABK 18.63 ± 0.00 3.40 ± 0.00 3.91 ± 0.00 3.01 ± 0.00 26.60 ± 0.00 3.48 ± 0.00 3.83 ± 0.00 3.17 ± 0.00 32.00 ± 0.00 3.64 ± 0.00 3.77 ± 0.00 3.41 ± 0.00 25.93 ± 0.00 3.50 ± 0.00 3.83 ± 0.00 3.19 ± 0.00
FBK 18.63 ± 0.00 3.19 ± 0.00 4.02 ± 0.00 2.80 ± 0.00 26.60 ± 0.00 3.28 ± 0.00 3.97 ± 0.00 2.95 ± 0.00 32.00 ± 0.00 3.39 ± 0.00 3.97 ± 0.00 3.12 ± 0.00 25.93 ± 0.00 3.28 ± 0.00 3.98 ± 0.00 2.95 ± 0.00

Claude Sonnet 4.5

NBK 23.86 ± 1.50 3.98 ± 0.02 3.77 ± 0.01 3.24 ± 0.05 22.66 ± 0.85 4.04 ± 0.02 3.63 ± 0.02 3.47 ± 0.03 21.00 ± 2.00 4.14 ± 0.04 3.74 ± 0.02 3.39 ± 0.03 22.55 ± 0.75 4.05 ± 0.01 3.69 ± 0.01 3.40 ± 0.01

BK 26.80 ± 1.50 4.05 ± 0.03 3.75 ± 0.03 3.31 ± 0.02 28.08 ± 2.15 4.06 ± 0.02 3.57 ± 0.03 3.54 ± 0.03 24.67 ± 1.53 4.10 ± 0.03 3.67 ± 0.02 3.47 ± 0.06 26.91 ± 1.23 4.07 ± 0.02 3.64 ± 0.02 3.47 ± 0.02
SBK 16.67 ± 0.00 4.10 ± 0.00 3.73 ± 0.00 3.53 ± 0.00 20.00 ± 0.00 4.11 ± 0.00 3.53 ± 0.00 3.64 ± 0.00 20.00 ± 0.00 4.11 ± 0.00 3.79 ± 0.00 3.52 ± 0.00 19.16 ± 0.00 4.11 ± 0.00 3.64 ± 0.00 3.58 ± 0.00
SABK 19.61 ± 0.00 4.11 ± 0.00 3.75 ± 0.00 3.42 ± 0.00 25.12 ± 0.00 4.11 ± 0.00 3.52 ± 0.00 3.66 ± 0.00 29.00 ± 0.00 4.06 ± 0.00 3.82 ± 0.00 3.47 ± 0.00 24.69 ± 0.00 4.10 ± 0.00 3.65 ± 0.00 3.55 ± 0.00
FBK 23.53 ± 0.00 3.99 ± 0.00 3.80 ± 0.00 3.16 ± 0.00 23.65 ± 0.00 3.94 ± 0.00 3.67 ± 0.00 3.40 ± 0.00 22.00 ± 0.00 3.95 ± 0.00 3.85 ± 0.00 3.33 ± 0.00 23.21 ± 0.00 3.96 ± 0.00 3.75 ± 0.00 3.32 ± 0.00

Claude Opus 4.1

NBK 22.55 ± 2.59 4.00 ± 0.06 3.76 ± 0.03 2.99 ± 0.06 20.36 ± 0.28 4.01 ± 0.01 3.61 ± 0.01 3.20 ± 0.00 25.67 ± 4.16 4.09 ± 0.03 3.77 ± 0.01 3.29 ± 0.02 22.22 ± 1.48 4.03 ± 0.01 3.69 ± 0.01 3.17 ± 0.01

BK 22.55 ± 0.00 4.02 ± 0.03 3.74 ± 0.02 3.10 ± 0.07 26.11 ± 1.71 4.05 ± 0.01 3.54 ± 0.02 3.28 ± 0.04 27.00 ± 1.00 4.11 ± 0.01 3.66 ± 0.03 3.37 ± 0.02 25.43 ± 0.65 4.05 ± 0.01 3.62 ± 0.02 3.26 ± 0.02
SBK 24.51 ± 0.00 4.10 ± 0.00 3.69 ± 0.00 3.29 ± 0.00 20.81 ± 0.00 4.15 ± 0.00 3.48 ± 0.00 3.50 ± 0.00 24.00 ± 0.00 4.16 ± 0.00 3.67 ± 0.00 3.57 ± 0.00 22.53 ± 0.00 4.14 ± 0.00 3.58 ± 0.00 3.46 ± 0.00
SABK 28.43 ± 0.00 4.09 ± 0.00 3.74 ± 0.00 3.27 ± 0.00 22.17 ± 0.00 4.13 ± 0.00 3.47 ± 0.00 3.55 ± 0.00 25.00 ± 0.00 4.13 ± 0.00 3.65 ± 0.00 3.64 ± 0.00 24.44 ± 0.00 4.12 ± 0.00 3.58 ± 0.00 3.50 ± 0.00
FBK 20.59 ± 0.00 3.97 ± 0.00 3.76 ± 0.00 2.96 ± 0.00 22.17 ± 0.00 3.97 ± 0.00 3.67 ± 0.00 3.15 ± 0.00 23.00 ± 0.00 3.98 ± 0.00 3.78 ± 0.00 3.39 ± 0.00 21.98 ± 0.00 3.97 ± 0.00 3.72 ± 0.00 3.16 ± 0.00

Gemini 3-Flash

NBK 22.88 ± 1.50 4.43 ± 0.03 3.58 ± 0.01 4.23 ± 0.01 22.33 ± 2.48 4.37 ± 0.01 3.32 ± 0.04 4.32 ± 0.02 21.33 ± 2.31 4.47 ± 0.03 3.45 ± 0.03 4.34 ± 0.01 22.22 ± 1.08 4.41 ± 0.02 3.42 ± 0.02 4.30 ± 0.01

BK 24.84 ± 4.08 4.42 ± 0.03 3.56 ± 0.04 4.24 ± 0.01 23.97 ± 1.24 4.41 ± 0.01 3.25 ± 0.02 4.35 ± 0.02 23.00 ± 1.00 4.52 ± 0.04 3.39 ± 0.08 4.37 ± 0.05 23.95 ± 1.62 4.44 ± 0.01 3.36 ± 0.02 4.33 ± 0.01
SBK 23.53 ± 0.00 4.50 ± 0.00 3.48 ± 0.00 4.26 ± 0.00 21.78 ± 0.00 4.47 ± 0.00 3.19 ± 0.00 4.41 ± 0.00 20.83 ± 0.00 4.51 ± 0.00 3.38 ± 0.00 4.36 ± 0.00 21.99 ± 0.00 4.49 ± 0.00 3.31 ± 0.00 4.36 ± 0.00
SABK 28.43 ± 0.00 4.48 ± 0.00 3.49 ± 0.00 4.28 ± 0.00 24.14 ± 0.00 4.50 ± 0.00 3.13 ± 0.00 4.43 ± 0.00 28.00 ± 0.00 4.55 ± 0.00 3.40 ± 0.00 4.41 ± 0.00 26.17 ± 0.00 4.51 ± 0.00 3.29 ± 0.00 4.39 ± 0.00
FBK 29.41 ± 0.00 4.40 ± 0.00 3.58 ± 0.00 4.21 ± 0.00 23.65 ± 0.00 4.34 ± 0.00 3.37 ± 0.00 4.28 ± 0.00 21.00 ± 0.00 4.44 ± 0.00 3.51 ± 0.00 4.29 ± 0.00 24.44 ± 0.00 4.38 ± 0.00 3.46 ± 0.00 4.26 ± 0.00

OpenAI GPT-5.2

NBK 18.95 ± 2.04 3.53 ± 0.04 3.49 ± 0.01 3.61 ± 0.05 20.69 ± 1.48 3.59 ± 0.02 3.37 ± 0.03 3.60 ± 0.02 22.00 ± 1.73 3.61 ± 0.02 3.37 ± 0.03 3.67 ± 0.05 20.58 ± 1.03 3.58 ± 0.02 3.40 ± 0.03 3.62 ± 0.03

BK 19.93 ± 0.57 3.59 ± 0.06 3.43 ± 0.01 3.69 ± 0.01 25.78 ± 2.80 3.73 ± 0.02 3.27 ± 0.01 3.74 ± 0.02 19.67 ± 1.53 3.63 ± 0.07 3.27 ± 0.01 3.70 ± 0.05 22.80 ± 1.79 3.67 ± 0.02 3.31 ± 0.01 3.72 ± 0.01
SBK 17.65 ± 0.00 3.60 ± 0.00 3.36 ± 0.00 3.76 ± 0.00 18.72 ± 0.00 3.70 ± 0.00 3.20 ± 0.00 3.79 ± 0.00 21.00 ± 0.00 3.60 ± 0.00 3.32 ± 0.00 3.71 ± 0.00 19.01 ± 0.00 3.65 ± 0.00 3.27 ± 0.00 3.76 ± 0.00
SABK 18.63 ± 0.00 3.62 ± 0.00 3.34 ± 0.00 3.76 ± 0.00 24.63 ± 0.00 3.79 ± 0.00 3.17 ± 0.00 3.86 ± 0.00 24.00 ± 0.00 3.55 ± 0.00 3.28 ± 0.00 3.72 ± 0.00 22.96 ± 0.00 3.69 ± 0.00 3.24 ± 0.00 3.80 ± 0.00
FBK 20.59 ± 0.00 3.49 ± 0.00 3.50 ± 0.00 3.58 ± 0.00 19.70 ± 0.00 3.60 ± 0.00 3.37 ± 0.00 3.56 ± 0.00 18.00 ± 0.00 3.64 ± 0.00 3.42 ± 0.00 3.68 ± 0.00 19.51 ± 0.00 3.58 ± 0.00 3.41 ± 0.00 3.60 ± 0.00

Human Baseline
NBK 8.82 2.59 3.78 2.52 23.15 3.13 3.39 2.92 26.00 3.07 3.26 3.05 20.25 2.98 3.46 2.85

BK 9.80 2.65 3.78 2.52 23.65 3.22 3.32 2.92 27.00 3.30 3.24 3.05 20.99 3.10 3.42 2.85

OpenAI O3-mini

NBK 19.28 ± 5.91 4.34 ± 0.02 3.25 ± 0.06 4.41 ± 0.01 21.02 ± 1.50 4.38 ± 0.02 3.08 ± 0.04 4.46 ± 0.03 18.00 ± 2.00 4.42 ± 0.05 3.16 ± 0.03 4.46 ± 0.01 19.84 ± 1.49 4.38 ± 0.01 3.14 ± 0.03 4.44 ± 0.02

BK 21.24 ± 2.26 4.42 ± 0.03 3.16 ± 0.05 4.48 ± 0.05 22.00 ± 1.03 4.48 ± 0.01 2.94 ± 0.02 4.56 ± 0.00 20.33 ± 0.58 4.51 ± 0.03 3.07 ± 0.04 4.53 ± 0.03 21.40 ± 0.87 4.47 ± 0.01 3.02 ± 0.03 4.53 ± 0.02
SBK 11.70 ± 0.00 4.45 ± 0.00 3.11 ± 0.00 4.45 ± 0.00 16.08 ± 0.00 4.46 ± 0.00 2.87 ± 0.00 4.57 ± 0.00 16.00 ± 0.00 4.49 ± 0.00 3.16 ± 0.00 4.51 ± 0.00 14.96 ± 0.00 4.46 ± 0.00 3.00 ± 0.00 4.52 ± 0.00
SABK 19.61 ± 0.00 4.33 ± 0.00 3.12 ± 0.00 4.43 ± 0.00 17.24 ± 0.00 4.48 ± 0.00 2.85 ± 0.00 4.56 ± 0.00 26.00 ± 0.00 4.52 ± 0.00 3.00 ± 0.00 4.58 ± 0.00 20.00 ± 0.00 4.45 ± 0.00 2.95 ± 0.00 4.53 ± 0.00
FBK 17.65 ± 0.00 4.29 ± 0.00 3.25 ± 0.00 4.39 ± 0.00 19.70 ± 0.00 4.36 ± 0.00 3.11 ± 0.00 4.45 ± 0.00 19.00 ± 0.00 4.42 ± 0.00 3.20 ± 0.00 4.44 ± 0.00 19.01 ± 0.00 4.36 ± 0.00 3.17 ± 0.00 4.43 ± 0.00

DeepSeek v3

NBK 16.99 ± 2.47 4.35 ± 0.07 3.64 ± 0.17 4.34 ± 0.09 19.21 ± 1.71 4.47 ± 0.02 3.52 ± 0.01 4.37 ± 0.06 21.33 ± 2.52 4.63 ± 0.03 3.74 ± 0.10 4.33 ± 0.04 19.18 ± 0.79 4.48 ± 0.03 3.60 ± 0.06 4.35 ± 0.04

BK 18.63 ± 7.40 4.49 ± 0.02 3.52 ± 0.07 4.23 ± 0.02 22.82 ± 0.57 4.55 ± 0.02 3.36 ± 0.02 4.44 ± 0.08 23.67 ± 1.53 4.64 ± 0.05 3.54 ± 0.06 4.35 ± 0.08 21.98 ± 2.36 4.56 ± 0.00 3.45 ± 0.01 4.37 ± 0.06
SBK 13.73 ± 0.00 4.51 ± 0.00 3.71 ± 0.00 4.26 ± 0.00 18.32 ± 0.00 4.60 ± 0.00 3.51 ± 0.00 4.39 ± 0.00 22.22 ± 0.00 4.59 ± 0.00 3.76 ± 0.00 4.44 ± 0.00 18.12 ± 0.00 4.58 ± 0.00 3.62 ± 0.00 4.37 ± 0.00
SABK 16.67 ± 0.00 4.38 ± 0.00 3.72 ± 0.00 4.32 ± 0.00 19.70 ± 0.00 4.61 ± 0.00 3.32 ± 0.00 4.39 ± 0.00 24.00 ± 0.00 4.53 ± 0.00 3.80 ± 0.00 4.45 ± 0.00 20.00 ± 0.00 4.53 ± 0.00 3.54 ± 0.00 4.39 ± 0.00
FBK 16.67 ± 0.00 4.31 ± 0.00 3.79 ± 0.00 4.34 ± 0.00 21.67 ± 0.00 4.49 ± 0.00 3.39 ± 0.00 4.48 ± 0.00 23.00 ± 0.00 4.47 ± 0.00 3.79 ± 0.00 4.30 ± 0.00 20.74 ± 0.00 4.44 ± 0.00 3.59 ± 0.00 4.40 ± 0.00

Llama 3.3 70B

NBK 16.99 ± 2.26 3.53 ± 0.03 3.65 ± 0.03 3.44 ± 0.07 19.54 ± 0.28 3.51 ± 0.05 3.68 ± 0.02 3.38 ± 0.00 16.67 ± 0.58 3.47 ± 0.02 3.72 ± 0.04 3.31 ± 0.03 18.19 ± 0.71 3.50 ± 0.03 3.68 ± 0.01 3.38 ± 0.01

BK 21.57 ± 2.59 3.54 ± 0.03 3.61 ± 0.04 3.53 ± 0.05 19.87 ± 1.03 3.65 ± 0.03 3.62 ± 0.01 3.55 ± 0.03 18.00 ± 1.00 3.53 ± 0.09 3.60 ± 0.01 3.42 ± 0.08 19.84 ± 0.29 3.59 ± 0.02 3.61 ± 0.02 3.51 ± 0.01
SBK 14.14 ± 0.00 3.64 ± 0.00 3.57 ± 0.00 3.54 ± 0.00 18.59 ± 0.00 3.63 ± 0.00 3.62 ± 0.00 3.43 ± 0.00 14.43 ± 0.00 3.47 ± 0.00 3.73 ± 0.00 3.37 ± 0.00 16.44 ± 0.00 3.59 ± 0.00 3.63 ± 0.00 3.44 ± 0.00
SABK 19.61 ± 0.00 3.59 ± 0.00 3.55 ± 0.00 3.60 ± 0.00 19.21 ± 0.00 3.71 ± 0.00 3.58 ± 0.00 3.60 ± 0.00 15.00 ± 0.00 3.62 ± 0.00 3.64 ± 0.00 3.56 ± 0.00 18.27 ± 0.00 3.66 ± 0.00 3.59 ± 0.00 3.59 ± 0.00
FBK 18.63 ± 0.00 3.50 ± 0.00 3.70 ± 0.00 3.33 ± 0.00 18.72 ± 0.00 3.50 ± 0.00 3.75 ± 0.00 3.34 ± 0.00 18.00 ± 0.00 3.43 ± 0.00 3.63 ± 0.00 3.29 ± 0.00 18.52 ± 0.00 3.48 ± 0.00 3.71 ± 0.00 3.33 ± 0.00

OpenAI O3

NBK 17.32 ± 2.26 3.91 ± 0.01 3.12 ± 0.06 3.95 ± 0.02 18.23 ± 2.26 3.92 ± 0.01 3.01 ± 0.01 4.00 ± 0.00 18.00 ± 1.73 3.88 ± 0.04 3.14 ± 0.01 3.95 ± 0.01 17.94 ± 1.27 3.91 ± 0.01 3.07 ± 0.02 3.98 ± 0.01

BK 18.63 ± 5.96 3.91 ± 0.04 3.08 ± 0.02 3.99 ± 0.02 23.48 ± 1.73 3.95 ± 0.01 2.99 ± 0.01 4.02 ± 0.02 23.00 ± 1.00 3.88 ± 0.03 3.07 ± 0.04 4.00 ± 0.02 22.14 ± 2.47 3.92 ± 0.02 3.03 ± 0.01 4.01 ± 0.00
SBK 21.57 ± 0.00 3.93 ± 0.00 3.00 ± 0.00 4.05 ± 0.00 20.20 ± 0.00 3.99 ± 0.00 2.92 ± 0.00 4.07 ± 0.00 17.00 ± 0.00 3.92 ± 0.00 3.12 ± 0.00 4.04 ± 0.00 19.75 ± 0.00 3.96 ± 0.00 2.99 ± 0.00 4.06 ± 0.00
SABK 18.63 ± 0.00 3.93 ± 0.00 3.09 ± 0.00 4.01 ± 0.00 20.69 ± 0.00 3.98 ± 0.00 2.93 ± 0.00 4.08 ± 0.00 21.00 ± 0.00 3.95 ± 0.00 3.04 ± 0.00 4.06 ± 0.00 20.25 ± 0.00 3.96 ± 0.00 3.00 ± 0.00 4.06 ± 0.00
FBK 17.65 ± 0.00 3.81 ± 0.00 3.12 ± 0.00 3.88 ± 0.00 18.23 ± 0.00 3.94 ± 0.00 3.04 ± 0.00 3.98 ± 0.00 13.00 ± 0.00 3.86 ± 0.00 3.15 ± 0.00 3.99 ± 0.00 16.79 ± 0.00 3.89 ± 0.00 3.09 ± 0.00 3.96 ± 0.00

Qwen 3 32B

NBK 15.69 ± 1.96 3.86 ± 0.04 3.95 ± 0.04 3.65 ± 0.06 17.41 ± 0.75 3.88 ± 0.01 3.83 ± 0.05 3.73 ± 0.05 17.67 ± 1.53 3.83 ± 0.05 3.90 ± 0.04 3.68 ± 0.10 17.04 ± 0.49 3.86 ± 0.00 3.88 ± 0.02 3.70 ± 0.04

BK 19.93 ± 2.47 3.88 ± 0.07 3.88 ± 0.03 3.74 ± 0.07 18.06 ± 1.42 3.96 ± 0.03 3.79 ± 0.02 3.86 ± 0.02 20.33 ± 0.58 3.94 ± 0.02 3.82 ± 0.03 3.86 ± 0.09 19.09 ± 1.00 3.94 ± 0.01 3.82 ± 0.01 3.83 ± 0.01
SBK 13.75 ± 0.00 3.73 ± 0.00 3.89 ± 0.00 3.61 ± 0.00 18.29 ± 0.00 3.99 ± 0.00 3.79 ± 0.00 3.92 ± 0.00 15.48 ± 0.00 3.99 ± 0.00 3.88 ± 0.00 3.88 ± 0.00 16.45 ± 0.00 3.93 ± 0.00 3.84 ± 0.00 3.83 ± 0.00
SABK 14.71 ± 0.00 4.00 ± 0.00 3.90 ± 0.00 3.78 ± 0.00 16.26 ± 0.00 3.97 ± 0.00 3.71 ± 0.00 3.86 ± 0.00 21.00 ± 0.00 3.87 ± 0.00 3.86 ± 0.00 3.80 ± 0.00 17.04 ± 0.00 3.95 ± 0.00 3.80 ± 0.00 3.82 ± 0.00
FBK 13.73 ± 0.00 3.86 ± 0.00 3.92 ± 0.00 3.69 ± 0.00 19.21 ± 0.00 3.82 ± 0.00 3.87 ± 0.00 3.65 ± 0.00 16.00 ± 0.00 3.82 ± 0.00 3.89 ± 0.00 3.69 ± 0.00 17.04 ± 0.00 3.83 ± 0.00 3.89 ± 0.00 3.67 ± 0.00

Gemini 2.5-pro

NBK 17.32 ± 2.04 4.67 ± 0.03 2.84 ± 0.04 4.57 ± 0.06 16.26 ± 1.30 4.60 ± 0.00 2.67 ± 0.02 4.55 ± 0.02 18.33 ± 2.08 4.75 ± 0.03 2.97 ± 0.02 4.65 ± 0.02 17.04 ± 0.65 4.66 ± 0.01 2.79 ± 0.00 4.58 ± 0.01

BK 20.92 ± 3.44 4.64 ± 0.01 2.94 ± 0.03 4.50 ± 0.00 24.14 ± 2.61 4.59 ± 0.02 2.68 ± 0.06 4.51 ± 0.04 22.33 ± 2.08 4.76 ± 0.03 2.86 ± 0.06 4.64 ± 0.04 22.88 ± 0.14 4.64 ± 0.02 2.79 ± 0.04 4.54 ± 0.03
SBK 21.65 ± 0.00 4.71 ± 0.00 2.72 ± 0.00 4.67 ± 0.00 20.50 ± 0.00 4.63 ± 0.00 2.57 ± 0.00 4.55 ± 0.00 19.59 ± 0.00 4.82 ± 0.00 2.80 ± 0.00 4.66 ± 0.00 20.56 ± 0.00 4.70 ± 0.00 2.67 ± 0.00 4.61 ± 0.00
SABK 20.59 ± 0.00 4.71 ± 0.00 2.81 ± 0.00 4.60 ± 0.00 19.21 ± 0.00 4.70 ± 0.00 2.51 ± 0.00 4.66 ± 0.00 17.00 ± 0.00 4.77 ± 0.00 2.78 ± 0.00 4.69 ± 0.00 19.01 ± 0.00 4.72 ± 0.00 2.66 ± 0.00 4.65 ± 0.00
FBK 18.63 ± 0.00 4.65 ± 0.00 2.97 ± 0.00 4.51 ± 0.00 15.76 ± 0.00 4.56 ± 0.00 2.75 ± 0.00 4.45 ± 0.00 23.00 ± 0.00 4.74 ± 0.00 2.91 ± 0.00 4.67 ± 0.00 18.27 ± 0.00 4.62 ± 0.00 2.84 ± 0.00 4.52 ± 0.00

Qwen 3 235B

NBK 13.73 ± 0.00 4.72 ± 0.02 2.28 ± 0.04 4.52 ± 0.04 18.23 ± 1.48 4.71 ± 0.02 2.18 ± 0.05 4.60 ± 0.02 16.33 ± 1.53 4.75 ± 0.03 2.27 ± 0.02 4.64 ± 0.02 16.63 ± 0.38 4.73 ± 0.02 2.23 ± 0.03 4.59 ± 0.02

BK 17.32 ± 2.04 4.75 ± 0.02 2.24 ± 0.01 4.62 ± 0.02 20.85 ± 1.03 4.81 ± 0.05 2.06 ± 0.06 4.76 ± 0.06 22.33 ± 1.53 4.79 ± 0.02 2.25 ± 0.02 4.69 ± 0.04 20.33 ± 1.27 4.79 ± 0.03 2.15 ± 0.03 4.71 ± 0.03
SBK 14.71 ± 0.00 4.76 ± 0.00 2.17 ± 0.00 4.64 ± 0.00 19.21 ± 0.00 4.83 ± 0.00 2.00 ± 0.00 4.83 ± 0.00 16.16 ± 0.00 4.79 ± 0.00 2.21 ± 0.00 4.66 ± 0.00 17.33 ± 0.00 4.80 ± 0.00 2.09 ± 0.00 4.74 ± 0.00
SABK 15.69 ± 0.00 4.81 ± 0.00 2.16 ± 0.00 4.73 ± 0.00 21.18 ± 0.00 4.87 ± 0.00 1.97 ± 0.00 4.84 ± 0.00 21.21 ± 0.00 4.81 ± 0.00 2.17 ± 0.00 4.73 ± 0.00 19.80 ± 0.00 4.84 ± 0.00 2.06 ± 0.00 4.79 ± 0.00
FBK 12.75 ± 0.00 4.61 ± 0.00 2.35 ± 0.00 4.45 ± 0.00 21.18 ± 0.00 4.55 ± 0.00 2.30 ± 0.00 4.45 ± 0.00 19.00 ± 0.00 4.75 ± 0.00 2.32 ± 0.00 4.63 ± 0.00 18.52 ± 0.00 4.62 ± 0.00 2.32 ± 0.00 4.49 ± 0.00

OpenAI O4-mini

NBK 11.11 ± 2.47 3.83 ± 0.04 2.77 ± 0.01 3.57 ± 0.12 19.38 ± 3.21 3.82 ± 0.03 2.68 ± 0.04 3.58 ± 0.04 15.00 ± 1.00 3.81 ± 0.04 2.79 ± 0.08 3.63 ± 0.02 16.21 ± 2.10 3.82 ± 0.02 2.73 ± 0.01 3.59 ± 0.05

BK 15.03 ± 3.96 3.92 ± 0.05 2.77 ± 0.02 3.73 ± 0.09 23.15 ± 1.78 3.94 ± 0.00 2.62 ± 0.04 3.77 ± 0.05 19.33 ± 5.77 3.83 ± 0.07 2.70 ± 0.03 3.72 ± 0.09 20.16 ± 2.53 3.91 ± 0.03 2.68 ± 0.02 3.75 ± 0.03
SBK 13.73 ± 0.00 3.93 ± 0.00 2.75 ± 0.00 3.85 ± 0.00 16.75 ± 0.00 3.97 ± 0.00 2.63 ± 0.00 3.85 ± 0.00 10.00 ± 0.00 3.88 ± 0.00 2.78 ± 0.00 3.91 ± 0.00 14.32 ± 0.00 3.94 ± 0.00 2.70 ± 0.00 3.86 ± 0.00
SABK 16.67 ± 0.00 3.85 ± 0.00 2.71 ± 0.00 3.83 ± 0.00 21.67 ± 0.00 4.02 ± 0.00 2.61 ± 0.00 3.86 ± 0.00 16.00 ± 0.00 3.95 ± 0.00 2.79 ± 0.00 3.83 ± 0.00 19.01 ± 0.00 3.96 ± 0.00 2.68 ± 0.00 3.85 ± 0.00
FBK 14.71 ± 0.00 3.85 ± 0.00 2.81 ± 0.00 3.68 ± 0.00 21.18 ± 0.00 3.85 ± 0.00 2.69 ± 0.00 3.65 ± 0.00 17.00 ± 0.00 3.77 ± 0.00 2.84 ± 0.00 3.66 ± 0.00 18.52 ± 0.00 3.83 ± 0.00 2.76 ± 0.00 3.66 ± 0.00

Llama 3.1 8B

NBK 13.40 ± 2.04 4.22 ± 0.06 3.45 ± 0.05 3.94 ± 0.10 16.42 ± 2.71 4.26 ± 0.02 3.49 ± 0.10 3.95 ± 0.04 12.33 ± 4.62 4.20 ± 0.04 3.48 ± 0.08 3.97 ± 0.06 14.65 ± 1.03 4.23 ± 0.01 3.48 ± 0.06 3.95 ± 0.06

BK 10.78 ± 2.59 4.25 ± 0.11 3.40 ± 0.06 4.06 ± 0.02 17.08 ± 2.22 4.24 ± 0.01 3.46 ± 0.09 3.93 ± 0.07 18.33 ± 0.58 4.22 ± 0.04 3.39 ± 0.09 3.99 ± 0.05 15.80 ± 0.86 4.24 ± 0.03 3.43 ± 0.05 3.98 ± 0.03
SBK 9.80 ± 0.00 4.29 ± 0.00 3.28 ± 0.00 4.05 ± 0.00 16.75 ± 0.00 4.21 ± 0.00 3.49 ± 0.00 3.97 ± 0.00 17.00 ± 0.00 4.22 ± 0.00 3.50 ± 0.00 4.01 ± 0.00 15.06 ± 0.00 4.23 ± 0.00 3.44 ± 0.00 4.00 ± 0.00
SABK 14.71 ± 0.00 4.32 ± 0.00 3.34 ± 0.00 4.07 ± 0.00 16.75 ± 0.00 4.25 ± 0.00 3.47 ± 0.00 3.96 ± 0.00 11.00 ± 0.00 4.38 ± 0.00 3.33 ± 0.00 4.02 ± 0.00 14.81 ± 0.00 4.30 ± 0.00 3.40 ± 0.00 4.00 ± 0.00
FBK 15.69 ± 0.00 4.19 ± 0.00 3.43 ± 0.00 3.98 ± 0.00 16.75 ± 0.00 4.19 ± 0.00 3.52 ± 0.00 3.91 ± 0.00 15.00 ± 0.00 4.31 ± 0.00 3.56 ± 0.00 3.88 ± 0.00 16.05 ± 0.00 4.22 ± 0.00 3.51 ± 0.00 3.92 ± 0.00
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Table 4: Different versions of Gemini, OpenAI, Claude Sonnet, Llama, Qwen, and Deepseek evaluated on different question
formats. Best values within each family are highlighted. Conf. := Confidence Score; Diff. := Difficulty Level; Feas. :=
Feasibility Score.

Model Experimental
Setup

MCQ Numerical Free form

Accuracy (%) Calibration (1-5) Accuracy (%) Calibration (1-5) Accuracy (%) Calibration (1-5)

Conf. Diff. Feas. Conf. Diff. Feas. Partial Full Conf. Diff. Feas.

Gemini 3-pro

NBK 36.21 ± 1.78 4.42 ± 0.03 3.45 ± 0.01 3.89 ± 0.06 12.80 ± 2.58 4.19 ± 0.05 4.01 ± 0.03 2.46 ± 0.11 37.70 ± 1.65 22.39 ± 2.45 4.62 ± 0.01 3.01 ± 0.03 4.19 ± 0.09

BK 42.39 ± 1.55 4.46 ± 0.01 3.36 ± 0.05 3.96 ± 0.02 12.80 ± 1.36 4.16 ± 0.03 4.03 ± 0.02 2.47 ± 0.06 36.04 ± 0.78 21.12 ± 2.33 4.62 ± 0.03 2.90 ± 0.05 4.25 ± 0.03
SBK 37.04 ± 0.00 4.52 ± 0.00 3.17 ± 0.00 4.15 ± 0.00 10.71 ± 0.00 4.19 ± 0.00 3.98 ± 0.00 2.77 ± 0.00 38.90 ± 0.00 23.66 ± 0.00 4.71 ± 0.00 2.78 ± 0.00 4.47 ± 0.00
SABK 41.36 ± 0.00 4.55 ± 0.00 3.17 ± 0.00 4.15 ± 0.00 12.50 ± 0.00 4.24 ± 0.00 3.91 ± 0.00 2.75 ± 0.00 35.90 ± 0.00 21.37 ± 0.00 4.69 ± 0.00 2.76 ± 0.00 4.39 ± 0.00
FBK 38.89 ± 0.00 4.41 ± 0.00 3.44 ± 0.00 3.81 ± 0.00 8.93 ± 0.00 4.14 ± 0.00 4.04 ± 0.00 2.28 ± 0.00 36.41 ± 0.00 19.85 ± 0.00 4.62 ± 0.00 2.98 ± 0.00 4.10 ± 0.00

Claude Opus 4.5

NBK 33.54 ± 0.71 3.78 ± 0.05 3.88 ± 0.02 3.16 ± 0.01 13.99 ± 0.52 2.18 ± 0.03 4.59 ± 0.04 2.00 ± 0.02 34.69 ± 0.43 17.81 ± 1.17 3.74 ± 0.06 3.64 ± 0.01 3.50 ± 0.03

BK 39.09 ± 0.94 3.90 ± 0.03 3.80 ± 0.05 3.27 ± 0.02 15.77 ± 2.73 2.11 ± 0.02 4.58 ± 0.01 1.96 ± 0.02 38.37 ± 0.62 22.65 ± 1.17 3.79 ± 0.01 3.60 ± 0.03 3.54 ± 0.02
SBK 36.88 ± 0.00 3.95 ± 0.00 3.77 ± 0.00 3.34 ± 0.00 15.18 ± 0.00 2.23 ± 0.00 4.52 ± 0.00 2.08 ± 0.00 35.13 ± 0.00 19.23 ± 0.00 3.81 ± 0.00 3.47 ± 0.00 3.61 ± 0.00
SABK 35.80 ± 0.00 3.98 ± 0.00 3.69 ± 0.00 3.54 ± 0.00 17.86 ± 0.00 2.33 ± 0.00 4.53 ± 0.00 2.15 ± 0.00 36.34 ± 0.00 20.61 ± 0.00 3.91 ± 0.00 3.42 ± 0.00 3.64 ± 0.00
FBK 37.04 ± 0.00 3.72 ± 0.00 3.85 ± 0.00 3.17 ± 0.00 16.96 ± 0.00 2.06 ± 0.00 4.59 ± 0.00 1.99 ± 0.00 34.88 ± 0.00 19.85 ± 0.00 3.80 ± 0.00 3.62 ± 0.00 3.52 ± 0.00

Claude Sonnet 4.5

NBK 29.01 ± 1.63 4.22 ± 0.03 3.60 ± 0.05 3.65 ± 0.01 16.07 ± 0.89 3.59 ± 0.07 4.15 ± 0.05 2.38 ± 0.01 35.75 ± 2.22 20.10 ± 1.17 4.23 ± 0.01 3.42 ± 0.01 3.94 ± 0.03

BK 36.01 ± 1.28 4.26 ± 0.02 3.55 ± 0.05 3.80 ± 0.04 15.77 ± 2.58 3.56 ± 0.04 4.12 ± 0.02 2.33 ± 0.05 40.83 ± 0.40 25.19 ± 3.05 4.26 ± 0.01 3.35 ± 0.00 4.01 ± 0.04
SBK 25.62 ± 0.00 4.29 ± 0.00 3.50 ± 0.00 3.95 ± 0.00 11.93 ± 0.00 3.70 ± 0.00 4.11 ± 0.00 2.61 ± 0.00 36.26 ± 0.00 17.19 ± 0.00 4.23 ± 0.00 3.44 ± 0.00 3.95 ± 0.00
SABK 33.33 ± 0.00 4.27 ± 0.00 3.55 ± 0.00 3.82 ± 0.00 13.39 ± 0.00 3.65 ± 0.00 4.13 ± 0.00 2.56 ± 0.00 38.91 ± 0.00 23.66 ± 0.00 4.26 ± 0.00 3.39 ± 0.00 4.05 ± 0.00
FBK 29.63 ± 0.00 4.17 ± 0.00 3.67 ± 0.00 3.51 ± 0.00 14.29 ± 0.00 3.44 ± 0.00 4.12 ± 0.00 2.36 ± 0.00 39.25 ± 0.00 22.90 ± 0.00 4.12 ± 0.00 3.54 ± 0.00 3.90 ± 0.00

Claude Opus 4.1

NBK 29.01 ± 2.83 4.15 ± 0.02 3.64 ± 0.02 3.38 ± 0.06 16.07 ± 1.79 3.75 ± 0.07 4.00 ± 0.03 2.28 ± 0.07 34.38 ± 0.37 19.08 ± 0.76 4.13 ± 0.01 3.47 ± 0.01 3.68 ± 0.01

BK 35.39 ± 0.36 4.18 ± 0.01 3.54 ± 0.00 3.55 ± 0.04 14.58 ± 2.25 3.79 ± 0.05 4.01 ± 0.03 2.25 ± 0.05 37.52 ± 1.14 22.39 ± 0.44 4.12 ± 0.03 3.38 ± 0.03 3.76 ± 0.01
SBK 28.75 ± 0.00 4.20 ± 0.00 3.52 ± 0.00 3.76 ± 0.00 17.27 ± 0.00 3.95 ± 0.00 3.96 ± 0.00 2.43 ± 0.00 34.63 ± 0.00 19.38 ± 0.00 4.22 ± 0.00 3.33 ± 0.00 3.98 ± 0.00
SABK 30.86 ± 0.00 4.22 ± 0.00 3.52 ± 0.00 3.79 ± 0.00 16.96 ± 0.00 3.89 ± 0.00 3.99 ± 0.00 2.45 ± 0.00 38.24 ± 0.00 22.90 ± 0.00 4.18 ± 0.00 3.31 ± 0.00 4.03 ± 0.00
FBK 30.25 ± 0.00 4.16 ± 0.00 3.63 ± 0.00 3.42 ± 0.00 15.18 ± 0.00 3.59 ± 0.00 4.07 ± 0.00 2.21 ± 0.00 32.03 ± 0.00 17.56 ± 0.00 4.08 ± 0.00 3.54 ± 0.00 3.65 ± 0.00

Gemini 3-Flash

NBK 29.22 ± 2.85 4.38 ± 0.02 3.38 ± 0.01 4.30 ± 0.02 11.90 ± 1.03 4.18 ± 0.01 3.92 ± 0.03 4.02 ± 0.02 35.71 ± 1.56 22.39 ± 1.17 4.63 ± 0.02 3.03 ± 0.06 4.55 ± 0.04

BK 35.39 ± 1.28 4.44 ± 0.01 3.35 ± 0.02 4.32 ± 0.01 9.52 ± 1.86 4.18 ± 0.02 3.89 ± 0.02 4.03 ± 0.01 37.11 ± 3.11 22.14 ± 2.02 4.68 ± 0.03 2.92 ± 0.05 4.60 ± 0.02
SBK 31.06 ± 0.00 4.50 ± 0.00 3.24 ± 0.00 4.35 ± 0.00 12.61 ± 0.00 4.20 ± 0.00 3.89 ± 0.00 4.04 ± 0.00 33.56 ± 0.00 18.75 ± 0.00 4.72 ± 0.00 2.90 ± 0.00 4.65 ± 0.00
SABK 37.65 ± 0.00 4.49 ± 0.00 3.28 ± 0.00 4.37 ± 0.00 9.82 ± 0.00 4.22 ± 0.00 3.89 ± 0.00 4.05 ± 0.00 40.93 ± 0.00 25.95 ± 0.00 4.77 ± 0.00 2.79 ± 0.00 4.69 ± 0.00
FBK 33.33 ± 0.00 4.33 ± 0.00 3.43 ± 0.00 4.26 ± 0.00 14.29 ± 0.00 4.21 ± 0.00 3.89 ± 0.00 3.98 ± 0.00 36.75 ± 0.00 22.14 ± 0.00 4.59 ± 0.00 3.11 ± 0.00 4.50 ± 0.00

OpenAI GPT-5.2

NBK 28.81 ± 3.40 3.95 ± 0.00 3.12 ± 0.03 3.95 ± 0.02 12.50 ± 2.36 2.77 ± 0.05 4.02 ± 0.01 2.84 ± 0.06 33.80 ± 1.00 17.30 ± 1.17 3.82 ± 0.02 3.21 ± 0.04 3.88 ± 0.02

BK 30.04 ± 2.49 3.98 ± 0.02 3.01 ± 0.01 4.01 ± 0.02 13.10 ± 3.72 2.94 ± 0.07 3.99 ± 0.02 3.04 ± 0.05 38.52 ± 1.46 22.14 ± 1.32 3.92 ± 0.03 3.11 ± 0.02 3.94 ± 0.03
SBK 26.54 ± 0.00 3.92 ± 0.00 2.96 ± 0.00 4.01 ± 0.00 13.39 ± 0.00 2.97 ± 0.00 3.99 ± 0.00 3.13 ± 0.00 29.33 ± 0.00 14.50 ± 0.00 3.90 ± 0.00 3.03 ± 0.00 4.00 ± 0.00
SABK 27.16 ± 0.00 3.97 ± 0.00 2.92 ± 0.00 4.03 ± 0.00 16.96 ± 0.00 3.00 ± 0.00 3.94 ± 0.00 3.24 ± 0.00 36.06 ± 0.00 22.90 ± 0.00 3.92 ± 0.00 3.04 ± 0.00 3.99 ± 0.00
FBK 25.93 ± 0.00 3.93 ± 0.00 3.11 ± 0.00 3.93 ± 0.00 14.29 ± 0.00 2.76 ± 0.00 4.03 ± 0.00 2.82 ± 0.00 32.08 ± 0.00 16.03 ± 0.00 3.86 ± 0.00 3.26 ± 0.00 3.86 ± 0.00

Human Baseline
NBK 26.54 3.33 3.22 3.01 8.93 2.29 3.99 2.39 36.09 22.14 3.13 3.31 3.05

BK 27.16 3.46 3.14 3.01 9.82 2.36 3.96 2.39 36.86 22.90 3.28 3.30 3.05

OpenAI O3-mini

NBK 26.54 ± 1.23 4.56 ± 0.02 2.76 ± 0.06 4.69 ± 0.02 14.58 ± 1.86 3.95 ± 0.03 3.73 ± 0.02 4.01 ± 0.03 29.95 ± 1.12 16.03 ± 2.75 4.51 ± 0.04 3.10 ± 0.02 4.51 ± 0.05

BK 30.45 ± 2.17 4.70 ± 0.01 2.62 ± 0.03 4.81 ± 0.00 13.10 ± 1.03 3.98 ± 0.04 3.67 ± 0.03 4.02 ± 0.03 31.66 ± 1.04 17.30 ± 2.89 4.61 ± 0.02 2.97 ± 0.05 4.62 ± 0.02
SBK 18.24 ± 0.00 4.69 ± 0.00 2.61 ± 0.00 4.77 ± 0.00 11.32 ± 0.00 3.95 ± 0.00 3.64 ± 0.00 4.07 ± 0.00 28.35 ± 0.00 14.06 ± 0.00 4.61 ± 0.00 2.96 ± 0.00 4.60 ± 0.00
SABK 27.78 ± 0.00 4.69 ± 0.00 2.53 ± 0.00 4.78 ± 0.00 11.61 ± 0.00 3.92 ± 0.00 3.57 ± 0.00 4.02 ± 0.00 33.18 ± 0.00 17.56 ± 0.00 4.62 ± 0.00 2.95 ± 0.00 4.67 ± 0.00
FBK 25.31 ± 0.00 4.60 ± 0.00 2.75 ± 0.00 4.73 ± 0.00 10.71 ± 0.00 3.90 ± 0.00 3.72 ± 0.00 4.00 ± 0.00 32.70 ± 0.00 18.32 ± 0.00 4.44 ± 0.00 3.20 ± 0.00 4.43 ± 0.00

DeepSeek v3

NBK 23.66 ± 1.43 4.70 ± 0.04 3.50 ± 0.01 4.37 ± 0.04 13.39 ± 0.00 3.85 ± 0.13 4.06 ± 0.10 4.17 ± 0.10 33.14 ± 0.81 18.58 ± 1.92 4.74 ± 0.02 3.34 ± 0.11 4.49 ± 0.03

BK 27.98 ± 4.20 4.72 ± 0.01 3.29 ± 0.07 4.45 ± 0.04 12.50 ± 2.36 3.98 ± 0.04 3.97 ± 0.17 4.18 ± 0.08 36.92 ± 1.16 22.65 ± 2.68 4.84 ± 0.02 3.20 ± 0.11 4.43 ± 0.08
SBK 25.00 ± 0.00 4.75 ± 0.00 3.41 ± 0.00 4.44 ± 0.00 8.04 ± 0.00 4.10 ± 0.00 4.14 ± 0.00 4.11 ± 0.00 34.21 ± 0.00 18.32 ± 0.00 4.76 ± 0.00 3.44 ± 0.00 4.51 ± 0.00
SABK 25.31 ± 0.00 4.73 ± 0.00 3.36 ± 0.00 4.46 ± 0.00 10.71 ± 0.00 3.96 ± 0.00 4.05 ± 0.00 4.13 ± 0.00 36.37 ± 0.00 21.37 ± 0.00 4.77 ± 0.00 3.32 ± 0.00 4.52 ± 0.00
FBK 29.01 ± 0.00 4.65 ± 0.00 3.33 ± 0.00 4.48 ± 0.00 13.39 ± 0.00 3.76 ± 0.00 4.09 ± 0.00 4.25 ± 0.00 32.92 ± 0.00 16.79 ± 0.00 4.76 ± 0.00 3.49 ± 0.00 4.43 ± 0.00

Llama 3.3 70B

NBK 26.75 ± 0.71 3.92 ± 0.03 3.42 ± 0.02 3.83 ± 0.05 12.50 ± 0.89 2.73 ± 0.05 3.99 ± 0.02 2.67 ± 0.08 25.61 ± 1.94 12.47 ± 1.17 3.63 ± 0.08 3.74 ± 0.03 3.41 ± 0.01

BK 28.81 ± 0.36 4.01 ± 0.04 3.33 ± 0.02 3.92 ± 0.10 14.29 ± 1.79 2.84 ± 0.04 3.98 ± 0.03 2.82 ± 0.07 26.58 ± 1.46 13.49 ± 1.17 3.72 ± 0.06 3.64 ± 0.03 3.60 ± 0.05
SBK 24.68 ± 0.00 4.03 ± 0.00 3.35 ± 0.00 3.92 ± 0.00 10.19 ± 0.00 2.90 ± 0.00 3.99 ± 0.00 2.72 ± 0.00 24.00 ± 0.00 11.63 ± 0.00 3.64 ± 0.00 3.67 ± 0.00 3.48 ± 0.00
SABK 27.78 ± 0.00 4.07 ± 0.00 3.31 ± 0.00 3.99 ± 0.00 9.82 ± 0.00 2.89 ± 0.00 3.99 ± 0.00 2.90 ± 0.00 26.27 ± 0.00 13.74 ± 0.00 3.80 ± 0.00 3.58 ± 0.00 3.69 ± 0.00
FBK 27.16 ± 0.00 3.93 ± 0.00 3.51 ± 0.00 3.81 ± 0.00 13.39 ± 0.00 2.72 ± 0.00 3.99 ± 0.00 2.55 ± 0.00 25.05 ± 0.00 12.21 ± 0.00 3.59 ± 0.00 3.71 ± 0.00 3.39 ± 0.00

OpenAI O3

NBK 21.40 ± 0.36 4.00 ± 0.01 2.97 ± 0.01 4.03 ± 0.02 11.31 ± 1.36 3.67 ± 0.03 3.29 ± 0.04 3.83 ± 0.02 35.69 ± 2.54 19.34 ± 3.09 3.99 ± 0.01 3.00 ± 0.02 4.03 ± 0.01

BK 29.22 ± 2.57 4.00 ± 0.01 2.96 ± 0.02 4.06 ± 0.01 12.80 ± 2.87 3.74 ± 0.08 3.19 ± 0.01 3.91 ± 0.01 37.99 ± 2.50 21.37 ± 2.75 3.99 ± 0.01 3.00 ± 0.01 4.03 ± 0.01
SBK 25.31 ± 0.00 4.02 ± 0.00 2.88 ± 0.00 4.12 ± 0.00 14.29 ± 0.00 3.80 ± 0.00 3.19 ± 0.00 3.94 ± 0.00 33.38 ± 0.00 17.56 ± 0.00 4.00 ± 0.00 2.95 ± 0.00 4.08 ± 0.00
SABK 24.07 ± 0.00 4.01 ± 0.00 2.90 ± 0.00 4.09 ± 0.00 14.29 ± 0.00 3.83 ± 0.00 3.19 ± 0.00 3.96 ± 0.00 35.89 ± 0.00 20.61 ± 0.00 4.00 ± 0.00 2.95 ± 0.00 4.10 ± 0.00
FBK 18.52 ± 0.00 3.99 ± 0.00 2.98 ± 0.00 4.03 ± 0.00 14.29 ± 0.00 3.65 ± 0.00 3.31 ± 0.00 3.79 ± 0.00 32.18 ± 0.00 16.79 ± 0.00 3.97 ± 0.00 3.04 ± 0.00 4.01 ± 0.00

Qwen 3 32B

NBK 22.43 ± 1.98 4.04 ± 0.01 3.82 ± 0.03 3.88 ± 0.09 12.50 ± 4.46 3.48 ± 0.03 4.09 ± 0.04 3.24 ± 0.01 28.35 ± 0.43 14.25 ± 1.59 3.97 ± 0.03 3.78 ± 0.05 3.86 ± 0.04

BK 23.87 ± 2.34 4.10 ± 0.03 3.75 ± 0.02 3.99 ± 0.02 13.39 ± 3.09 3.64 ± 0.01 4.01 ± 0.03 3.45 ± 0.04 31.07 ± 2.49 18.07 ± 2.68 4.01 ± 0.01 3.75 ± 0.04 3.95 ± 0.01
SBK 19.71 ± 0.00 4.06 ± 0.00 3.76 ± 0.00 3.94 ± 0.00 10.11 ± 0.00 3.66 ± 0.00 4.08 ± 0.00 3.51 ± 0.00 32.38 ± 0.00 17.65 ± 0.00 4.00 ± 0.00 3.73 ± 0.00 3.99 ± 0.00
SABK 24.07 ± 0.00 4.12 ± 0.00 3.71 ± 0.00 4.03 ± 0.00 9.82 ± 0.00 3.60 ± 0.00 4.08 ± 0.00 3.31 ± 0.00 29.26 ± 0.00 14.50 ± 0.00 4.05 ± 0.00 3.66 ± 0.00 3.99 ± 0.00
FBK 21.60 ± 0.00 4.01 ± 0.00 3.84 ± 0.00 3.79 ± 0.00 9.82 ± 0.00 3.46 ± 0.00 4.12 ± 0.00 3.22 ± 0.00 31.14 ± 0.00 17.56 ± 0.00 3.92 ± 0.00 3.75 ± 0.00 3.89 ± 0.00

Gemini 2.5-pro

NBK 21.40 ± 0.71 4.79 ± 0.02 2.60 ± 0.05 4.73 ± 0.01 13.99 ± 1.03 4.43 ± 0.03 3.28 ± 0.02 4.25 ± 0.05 31.76 ± 1.36 14.25 ± 1.59 4.68 ± 0.02 2.59 ± 0.05 4.68 ± 0.02

BK 31.48 ± 1.07 4.79 ± 0.01 2.58 ± 0.05 4.71 ± 0.02 15.18 ± 0.00 4.38 ± 0.03 3.45 ± 0.04 4.07 ± 0.04 34.95 ± 2.70 18.83 ± 1.76 4.69 ± 0.03 2.50 ± 0.04 4.71 ± 0.04
SBK 23.12 ± 0.00 4.86 ± 0.00 2.42 ± 0.00 4.83 ± 0.00 20.18 ± 0.00 4.41 ± 0.00 3.34 ± 0.00 4.16 ± 0.00 32.70 ± 0.00 17.60 ± 0.00 4.75 ± 0.00 2.38 ± 0.00 4.72 ± 0.00
SABK 27.16 ± 0.00 4.83 ± 0.00 2.46 ± 0.00 4.82 ± 0.00 12.50 ± 0.00 4.45 ± 0.00 3.33 ± 0.00 4.26 ± 0.00 31.72 ± 0.00 14.50 ± 0.00 4.80 ± 0.00 2.33 ± 0.00 4.77 ± 0.00
FBK 22.84 ± 0.00 4.80 ± 0.00 2.56 ± 0.00 4.76 ± 0.00 10.71 ± 0.00 4.38 ± 0.00 3.54 ± 0.00 4.06 ± 0.00 36.74 ± 0.00 19.08 ± 0.00 4.62 ± 0.00 2.60 ± 0.00 4.61 ± 0.00

Qwen 3 235B

NBK 19.75 ± 1.07 4.88 ± 0.03 2.05 ± 0.04 4.83 ± 0.03 14.58 ± 1.03 4.36 ± 0.08 2.73 ± 0.09 4.09 ± 0.07 30.53 ± 0.25 14.50 ± 0.00 4.85 ± 0.03 2.03 ± 0.02 4.73 ± 0.04

BK 25.93 ± 2.23 4.92 ± 0.03 1.96 ± 0.03 4.90 ± 0.03 13.39 ± 0.89 4.44 ± 0.06 2.63 ± 0.03 4.28 ± 0.03 34.39 ± 1.30 19.34 ± 1.59 4.91 ± 0.02 1.98 ± 0.06 4.83 ± 0.04
SBK 20.99 ± 0.00 4.95 ± 0.00 1.90 ± 0.00 4.94 ± 0.00 13.51 ± 0.00 4.49 ± 0.00 2.56 ± 0.00 4.32 ± 0.00 29.60 ± 0.00 16.03 ± 0.00 4.89 ± 0.00 1.94 ± 0.00 4.86 ± 0.00
SABK 25.31 ± 0.00 4.97 ± 0.00 1.86 ± 0.00 4.94 ± 0.00 15.32 ± 0.00 4.52 ± 0.00 2.50 ± 0.00 4.40 ± 0.00 32.90 ± 0.00 16.79 ± 0.00 4.95 ± 0.00 1.95 ± 0.00 4.92 ± 0.00
FBK 22.22 ± 0.00 4.86 ± 0.00 2.03 ± 0.00 4.82 ± 0.00 14.29 ± 0.00 4.15 ± 0.00 2.95 ± 0.00 3.84 ± 0.00 33.61 ± 0.00 17.56 ± 0.00 4.71 ± 0.00 2.13 ± 0.00 4.65 ± 0.00

OpenAI O4-mini

NBK 22.43 ± 5.25 4.02 ± 0.02 2.42 ± 0.04 3.95 ± 0.05 8.33 ± 1.03 3.33 ± 0.03 3.29 ± 0.04 2.75 ± 0.09 31.10 ± 2.28 15.27 ± 0.76 3.99 ± 0.01 2.63 ± 0.03 3.87 ± 0.06

BK 28.81 ± 1.28 4.08 ± 0.02 2.37 ± 0.05 4.05 ± 0.01 10.12 ± 2.25 3.53 ± 0.08 3.18 ± 0.02 3.02 ± 0.08 33.11 ± 3.79 18.07 ± 4.34 4.02 ± 0.01 2.62 ± 0.06 3.99 ± 0.03
SBK 16.05 ± 0.00 4.08 ± 0.00 2.40 ± 0.00 4.11 ± 0.00 8.93 ± 0.00 3.62 ± 0.00 3.23 ± 0.00 3.24 ± 0.00 32.37 ± 0.00 16.79 ± 0.00 4.03 ± 0.00 2.61 ± 0.00 4.09 ± 0.00
SABK 26.54 ± 0.00 4.12 ± 0.00 2.40 ± 0.00 4.07 ± 0.00 8.04 ± 0.00 3.64 ± 0.00 3.17 ± 0.00 3.29 ± 0.00 34.87 ± 0.00 19.08 ± 0.00 4.05 ± 0.00 2.60 ± 0.00 4.05 ± 0.00
FBK 24.07 ± 0.00 4.05 ± 0.00 2.41 ± 0.00 4.01 ± 0.00 9.82 ± 0.00 3.33 ± 0.00 3.39 ± 0.00 2.86 ± 0.00 35.84 ± 0.00 19.08 ± 0.00 3.98 ± 0.00 2.64 ± 0.00 3.90 ± 0.00

Llama 3.1 8B

NBK 21.81 ± 2.92 4.30 ± 0.00 3.41 ± 0.03 3.94 ± 0.04 8.63 ± 4.22 4.08 ± 0.02 3.53 ± 0.09 3.95 ± 0.04 21.58 ± 0.86 10.94 ± 1.76 4.28 ± 0.04 3.52 ± 0.10 3.97 ± 0.09

BK 25.31 ± 0.62 4.29 ± 0.02 3.44 ± 0.07 3.96 ± 0.04 6.85 ± 2.06 4.07 ± 0.06 3.44 ± 0.13 3.95 ± 0.12 22.81 ± 1.80 11.70 ± 0.44 4.32 ± 0.08 3.42 ± 0.02 4.02 ± 0.02
SBK 22.22 ± 0.00 4.30 ± 0.00 3.36 ± 0.00 4.07 ± 0.00 7.14 ± 0.00 4.08 ± 0.00 3.55 ± 0.00 3.97 ± 0.00 21.98 ± 0.00 12.98 ± 0.00 4.27 ± 0.00 3.44 ± 0.00 3.94 ± 0.00
SABK 20.37 ± 0.00 4.34 ± 0.00 3.40 ± 0.00 4.03 ± 0.00 13.39 ± 0.00 4.15 ± 0.00 3.42 ± 0.00 3.99 ± 0.00 20.79 ± 0.00 9.16 ± 0.00 4.38 ± 0.00 3.38 ± 0.00 3.98 ± 0.00
FBK 24.69 ± 0.00 4.31 ± 0.00 3.51 ± 0.00 3.91 ± 0.00 10.71 ± 0.00 4.03 ± 0.00 3.58 ± 0.00 3.78 ± 0.00 22.77 ± 0.00 9.92 ± 0.00 4.27 ± 0.00 3.44 ± 0.00 4.06 ± 0.00
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Table 5: Different versions of Gemini, OpenAI, Claude Sonnet, Llama, Qwen, and Deepseek evaluated on different levels of
confidence, difficulty, and feasibility scores. Best values within each family are highlighted.

Model Exp.

Confidence Difficulty Feasibility

L1 L2 L3 L4 L5 L1 L2 L3 L4 L5 L1 L2 L3 L4 L5

Acc (%) # Que. Acc (%) # Que. Acc (%) # Que. Acc (%) # Que. Acc (%) # Que. Acc (%) # Que. Acc (%) # Que. Acc (%) # Que. Acc (%) # Que. Acc (%) # Que. Acc (%) # Que. Acc (%) # Que. Acc (%) # Que. Acc (%) # Que.

Gemini 3-pro

NBK 0.00 ± 0.00 0.33 - - - - 24.70 ± 1.62 233.67 26.11 ± 4.04 171.00 - - 23.09 ± 1.67 107.00 28.21 ± 18.29 12.33 26.26 ± 1.77 278.00 16.98 ± 2.87 7.67 10.22 ± 12.06 15.33 20.87 ± 3.49 122.67 - - 31.04 ± 1.12 142.00 25.06 ± 2.69 125.00

BK - - 100.00 ± 0.00 0.33 - - 24.85 ± 0.17 229.33 30.42 ± 2.26 175.33 0.00 ± 0.00 0.67 28.26 ± 2.41 119.33 18.15 ± 7.06 12.33 27.71 ± 0.45 264.67 17.04 ± 5.13 8.00 22.30 ± 9.66 11.00 20.98 ± 2.29 124.00 - - 30.71 ± 0.97 134.67 30.33 ± 1.97 135.33
SBK - - 0.00 ± 0.00 1.00 - - 23.65 ± 0.00 203.00 27.36 ± 0.00 201.00 0.00 ± 0.00 2.00 26.95 ± 0.00 141.00 40.00 ± 0.00 15.00 24.07 ± 0.00 241.00 16.67 ± 0.00 6.00 12.50 ± 0.00 8.00 17.53 ± 0.00 97.00 - - 30.37 ± 0.00 135.00 26.67 ± 0.00 165.00
SABK - - - - - - 23.74 ± 0.00 198.00 29.95 ± 0.00 207.00 0.00 ± 0.00 1.00 29.73 ± 0.00 148.00 33.33 ± 0.00 12.00 24.58 ± 0.00 240.00 50.00 ± 0.00 4.00 14.29 ± 0.00 7.00 22.86 ± 0.00 105.00 - - 26.77 ± 0.00 127.00 30.12 ± 0.00 166.00
FBK - - 0.00 ± 0.00 1.00 - - 23.85 ± 0.00 239.00 25.45 ± 0.00 165.00 - - 25.23 ± 0.00 107.00 16.67 ± 0.00 18.00 25.37 ± 0.00 268.00 8.33 ± 0.00 12.00 7.14 ± 0.00 14.00 18.49 ± 0.00 146.00 - - 31.15 ± 0.00 122.00 26.83 ± 0.00 123.00

Claude Opus 4.5

NBK 3.70 ± 6.42 8.00 17.31 ± 0.67 136.67 - - 28.10 ± 0.40 231.33 17.25 ± 6.78 24.33 - - 9.37 ± 6.32 17.67 25.85 ± 3.83 41.33 27.08 ± 0.32 264.67 12.08 ± 2.62 76.67 4.76 ± 8.25 10.33 21.25 ± 0.86 207.00 - - 28.40 ± 1.09 159.67 13.63 ± 7.59 23.33

BK 0.00 ± 0.00 8.67 17.69 ± 2.51 128.00 - - 33.05 ± 0.37 236.00 35.12 ± 3.82 28.33 - - 29.52 ± 2.86 21.33 33.15 ± 5.92 49.00 30.24 ± 1.89 259.00 13.46 ± 1.76 71.67 11.61 ± 7.27 12.33 21.24 ± 2.15 196.33 - - 35.69 ± 1.35 165.33 31.95 ± 3.86 27.00
SBK 0.00 ± 0.00 5.00 15.62 ± 0.00 128.00 - - 32.30 ± 0.00 226.00 19.51 ± 0.00 41.00 - - 13.33 ± 0.00 30.00 23.33 ± 0.00 60.00 30.38 ± 0.00 237.00 15.07 ± 0.00 73.00 0.00 ± 0.00 8.00 23.44 ± 0.00 192.00 - - 31.87 ± 0.00 160.00 12.50 ± 0.00 40.00
SABK 0.00 ± 0.00 2.00 21.01 ± 0.00 119.00 - - 29.36 ± 0.00 235.00 25.00 ± 0.00 44.00 - - 20.00 ± 0.00 35.00 27.87 ± 0.00 61.00 31.38 ± 0.00 239.00 9.23 ± 0.00 65.00 0.00 ± 0.00 3.00 23.33 ± 0.00 180.00 - - 30.06 ± 0.00 173.00 25.00 ± 0.00 44.00
FBK 0.00 ± 0.00 9.00 20.28 ± 0.00 143.00 - - 29.41 ± 0.00 221.00 40.74 ± 0.00 27.00 - - 18.75 ± 0.00 16.00 30.77 ± 0.00 52.00 29.41 ± 0.00 255.00 14.29 ± 0.00 77.00 11.11 ± 0.00 9.00 24.52 ± 0.00 208.00 - - 28.48 ± 0.00 158.00 32.00 ± 0.00 25.00

Claude Sonnet 4.5

NBK - - 13.22 ± 5.27 25.67 - - 24.31 ± 1.10 301.67 20.30 ± 5.59 71.67 - - 20.11 ± 1.37 44.67 17.83 ± 3.45 52.00 25.25 ± 1.02 282.67 8.17 ± 7.08 19.67 0.00 ± 0.00 0.33 21.09 ± 2.25 150.33 - - 25.01 ± 2.18 188.33 21.06 ± 2.71 60.00

BK - - 17.84 ± 3.10 26.33 - - 26.39 ± 1.05 293.00 33.90 ± 2.63 79.67 - - 31.03 ± 2.05 53.67 28.30 ± 4.65 53.00 27.31 ± 0.95 274.67 13.29 ± 6.72 17.67 - - 21.11 ± 2.02 140.67 - - 30.06 ± 1.44 190.67 32.46 ± 2.45 67.67
SBK - - 11.11 ± 0.00 18.00 - - 19.40 ± 0.00 299.00 20.25 ± 0.00 79.00 - - 16.98 ± 0.00 53.00 19.23 ± 0.00 52.00 20.15 ± 0.00 273.00 11.11 ± 0.00 18.00 - - 16.10 ± 0.00 118.00 - - 20.77 ± 0.00 207.00 19.72 ± 0.00 71.00
SABK - - 13.64 ± 0.00 22.00 - - 24.91 ± 0.00 293.00 29.27 ± 0.00 82.00 - - 23.64 ± 0.00 55.00 27.66 ± 0.00 47.00 26.55 ± 0.00 275.00 5.00 ± 0.00 20.00 - - 20.97 ± 0.00 124.00 - - 26.60 ± 0.00 203.00 28.57 ± 0.00 70.00
FBK - - 14.29 ± 0.00 35.00 - - 23.23 ± 0.00 310.00 32.08 ± 0.00 53.00 - - 20.59 ± 0.00 34.00 30.00 ± 0.00 50.00 23.39 ± 0.00 295.00 15.79 ± 0.00 19.00 - - 19.62 ± 0.00 158.00 - - 25.26 ± 0.00 194.00 30.43 ± 0.00 46.00

Claude Opus 4.1

NBK 0.00 ± 0.00 0.67 9.48 ± 8.57 15.33 - - 22.83 ± 1.30 337.67 25.02 ± 3.08 45.00 - - 16.62 ± 1.07 28.00 18.83 ± 4.21 74.00 24.38 ± 1.07 291.33 6.67 ± 11.55 5.33 0.00 ± 0.00 1.33 23.14 ± 1.93 183.00 - - 22.04 ± 1.95 175.67 23.11 ± 3.41 38.67

BK - - 20.00 ± 2.68 13.33 - - 24.73 ± 0.30 338.33 34.40 ± 2.50 48.33 - - 32.24 ± 4.76 35.33 26.32 ± 4.83 87.33 25.16 ± 0.65 271.67 4.76 ± 8.25 5.67 0.00 ± 0.00 0.67 24.28 ± 0.47 170.33 - - 25.74 ± 1.51 183.00 31.79 ± 1.55 46.00
SBK - - 33.33 ± 0.00 6.00 - - 23.08 ± 0.00 325.00 19.12 ± 0.00 68.00 - - 17.78 ± 0.00 45.00 18.75 ± 0.00 80.00 24.35 ± 0.00 271.00 33.33 ± 0.00 3.00 100.00 ± 0.00 1.00 20.59 ± 0.00 136.00 - - 24.38 ± 0.00 201.00 19.67 ± 0.00 61.00
SABK - - 0.00 ± 0.00 8.00 - - 24.70 ± 0.00 328.00 28.57 ± 0.00 63.00 - - 27.66 ± 0.00 47.00 21.79 ± 0.00 78.00 25.65 ± 0.00 269.00 0.00 ± 0.00 5.00 - - 21.09 ± 0.00 128.00 - - 26.64 ± 0.00 214.00 26.32 ± 0.00 57.00
FBK 0.00 ± 0.00 1.00 4.35 ± 0.00 23.00 - - 22.99 ± 0.00 335.00 28.21 ± 0.00 39.00 - - 20.69 ± 0.00 29.00 25.40 ± 0.00 63.00 22.71 ± 0.00 295.00 0.00 ± 0.00 11.00 0.00 ± 0.00 1.00 21.74 ± 0.00 184.00 - - 22.16 ± 0.00 176.00 27.03 ± 0.00 37.00

Gemini 3-Flash

NBK - - 0.00 ± 0.00 0.67 - - 20.03 ± 2.07 238.33 25.54 ± 2.50 166.00 - - 24.14 ± 3.61 86.00 25.07 ± 2.59 66.33 20.99 ± 1.47 251.00 0.00 ± 0.00 1.67 - - 8.33 ± 14.43 2.67 41.67 ± 52.04 2.33 20.65 ± 1.62 269.67 25.62 ± 1.56 130.33

BK - - 100.00 ± 0.00 0.33 - - 18.69 ± 2.00 224.67 30.37 ± 2.60 180.00 - - 29.63 ± 4.10 102.67 28.63 ± 8.10 53.67 20.66 ± 1.02 248.33 0.00 ± 0.00 0.33 - - 16.67 ± 28.87 2.00 16.67 ± 28.87 1.67 20.52 ± 0.99 263.00 30.69 ± 3.41 138.33
SBK - - - - - - 18.93 ± 0.00 206.00 25.26 ± 0.00 194.00 - - 21.43 ± 0.00 112.00 25.93 ± 0.00 54.00 21.55 ± 0.00 232.00 0.00 ± 0.00 2.00 - - 33.33 ± 0.00 3.00 100.00 ± 0.00 2.00 20.16 ± 0.00 243.00 23.68 ± 0.00 152.00
SABK - - - - - - 21.50 ± 0.00 200.00 30.73 ± 0.00 205.00 - - 31.53 ± 0.00 111.00 34.85 ± 0.00 66.00 21.05 ± 0.00 228.00 - - - - - - 0.00 ± 0.00 1.00 22.36 ± 0.00 246.00 32.28 ± 0.00 158.00
FBK - - - - - - 21.91 ± 0.00 251.00 28.57 ± 0.00 154.00 - - 33.33 ± 0.00 72.00 18.42 ± 0.00 76.00 23.74 ± 0.00 257.00 - - - - 25.00 ± 0.00 4.00 0.00 ± 0.00 2.00 22.61 ± 0.00 283.00 29.31 ± 0.00 116.00

OpenAI GPT-5.2

NBK 0.00 ± 0.00 0.33 7.59 ± 1.27 83.33 0.00 ± 0.00 1.00 24.08 ± 1.63 318.33 - - - - 18.36 ± 5.55 18.00 26.16 ± 1.80 211.00 13.91 ± 2.27 169.00 15.00 ± 13.23 5.00 0.00 ± 0.00 0.33 9.36 ± 0.65 64.33 16.31 ± 4.29 31.00 23.18 ± 1.15 300.67 34.44 ± 15.03 6.67

BK - - 12.03 ± 2.66 66.33 50.00 ± 70.71 0.67 24.80 ± 1.69 336.00 75.00 ± 35.36 1.00 - - 37.54 ± 7.45 28.67 26.08 ± 2.12 225.00 15.11 ± 3.65 145.67 16.67 ± 28.87 4.67 - - 11.52 ± 1.91 49.00 18.50 ± 4.88 28.33 23.75 ± 2.31 314.33 53.90 ± 7.07 12.33
SBK - - 10.14 ± 0.00 69.00 0.00 ± 0.00 4.00 21.15 ± 0.00 331.00 0.00 ± 0.00 1.00 - - 16.67 ± 0.00 42.00 22.37 ± 0.00 219.00 15.33 ± 0.00 137.00 0.00 ± 0.00 7.00 - - 13.64 ± 0.00 44.00 12.50 ± 0.00 32.00 20.66 ± 0.00 305.00 16.67 ± 0.00 24.00
SABK - - 14.29 ± 0.00 63.00 0.00 ± 0.00 2.00 24.48 ± 0.00 339.00 100.00 ± 0.00 1.00 - - 23.91 ± 0.00 46.00 25.91 ± 0.00 220.00 18.52 ± 0.00 135.00 0.00 ± 0.00 4.00 - - 17.14 ± 0.00 35.00 24.32 ± 0.00 37.00 23.13 ± 0.00 307.00 26.92 ± 0.00 26.00
FBK 0.00 ± 0.00 1.00 8.43 ± 0.00 83.00 - - 22.57 ± 0.00 319.00 - - - - 31.25 ± 0.00 16.00 21.33 ± 0.00 211.00 17.16 ± 0.00 169.00 0.00 ± 0.00 7.00 0.00 ± 0.00 1.00 9.23 ± 0.00 65.00 17.14 ± 0.00 35.00 21.96 ± 0.00 296.00 33.33 ± 0.00 6.00

Human Baseline NBK 12.00 ± 0.00 50.00 12.50 ± 0.00 96.00 17.39 ± 0.00 92.00 28.57 ± 0.00 147.00 30.00 ± 0.00 20.00 30.00 ± 0.00 10.00 33.85 ± 0.00 65.00 25.81 ± 0.00 124.00 13.48 ± 0.00 141.00 9.23 ± 0.00 65.00 3.08 ± 0.00 65.00 5.93 ± 0.00 135.00 12.24 ± 0.00 49.00 27.10 ± 0.00 107.00 75.51 ± 0.00 49.00

BK 14.00 ± 0.00 50.00 10.13 ± 0.00 79.00 18.18 ± 0.00 88.00 27.85 ± 0.00 158.00 33.33 ± 0.00 30.00 31.25 ± 0.00 16.00 33.82 ± 0.00 68.00 26.67 ± 0.00 120.00 14.29 ± 0.00 133.00 8.82 ± 0.00 68.00 3.08 ± 0.00 65.00 5.19 ± 0.00 135.00 12.24 ± 0.00 49.00 28.97 ± 0.00 107.00 79.59 ± 0.00 49.00

OpenAI O3-mini

NBK - - 0.00 ± 0.00 3.67 - - 20.71 ± 0.52 241.33 18.93 ± 3.56 160.00 0.00 ± 0.00 4.00 19.10 ± 2.49 81.00 23.06 ± 4.19 174.00 16.90 ± 3.87 146.00 - - - - 0.00 ± 0.00 1.67 - - 19.66 ± 0.82 220.33 20.18 ± 2.88 183.00

BK - - 0.00 ± 0.00 2.33 - - 16.91 ± 1.09 207.00 26.40 ± 1.60 195.67 0.00 ± 0.00 3.67 28.50 ± 3.52 103.67 21.46 ± 1.37 177.00 15.75 ± 1.45 120.67 - - - - 0.00 ± 0.00 1.67 - - 16.01 ± 0.34 185.33 26.13 ± 1.15 218.00
SBK - - 25.00 ± 0.00 4.00 - - 16.08 ± 0.00 199.00 13.68 ± 0.00 190.00 0.00 ± 0.00 3.00 15.24 ± 0.00 105.00 16.18 ± 0.00 173.00 13.39 ± 0.00 112.00 - - - - - - - - 15.51 ± 0.00 187.00 14.56 ± 0.00 206.00
SABK - - 0.00 ± 0.00 5.00 - - 14.49 ± 0.00 207.00 26.42 ± 0.00 193.00 20.00 ± 0.00 5.00 23.89 ± 0.00 113.00 21.86 ± 0.00 183.00 12.50 ± 0.00 104.00 - - - - 0.00 ± 0.00 1.00 - - 14.52 ± 0.00 186.00 24.77 ± 0.00 218.00
FBK - - 16.67 ± 0.00 6.00 - - 18.18 ± 0.00 242.00 20.38 ± 0.00 157.00 66.67 ± 0.00 3.00 15.58 ± 0.00 77.00 24.43 ± 0.00 176.00 13.51 ± 0.00 148.00 0.00 ± 0.00 1.00 0.00 ± 0.00 1.00 - - - - 16.81 ± 0.00 226.00 21.91 ± 0.00 178.00

DeepSeek v3

NBK 12.60 ± 7.97 20.33 0.00 ± 0.00 0.33 - - 18.83 ± 0.88 125.67 20.32 ± 1.92 254.00 18.75 ± 6.25 13.33 16.80 ± 6.00 99.33 - - 20.47 ± 0.79 208.33 19.26 ± 5.64 79.33 2.22 ± 3.85 10.33 20.63 ± 18.03 6.00 0.00 ± 0.00 0.67 20.31 ± 1.28 198.67 19.39 ± 3.38 184.67

BK 10.91 ± 3.88 15.33 - - - - 22.51 ± 4.69 115.33 22.84 ± 1.31 268.67 19.03 ± 21.41 15.33 22.92 ± 3.26 120.67 0.00 ± 0.00 0.33 23.95 ± 4.26 196.00 16.81 ± 1.83 67.00 12.13 ± 10.52 15.33 26.19 ± 8.58 5.33 0.00 ± 0.00 0.33 22.81 ± 3.93 174.33 22.32 ± 2.18 204.00
SBK 9.09 ± 0.00 11.00 - - - - 16.13 ± 0.00 124.00 19.92 ± 0.00 261.00 0.00 ± 0.00 8.00 21.57 ± 0.00 102.00 100.00 ± 0.00 1.00 17.87 ± 0.00 207.00 16.67 ± 0.00 78.00 0.00 ± 0.00 7.00 10.00 ± 0.00 10.00 0.00 ± 0.00 1.00 15.87 ± 0.00 189.00 22.22 ± 0.00 189.00
SABK 0.00 ± 0.00 16.00 - - - - 20.16 ± 0.00 124.00 21.37 ± 0.00 262.00 7.14 ± 0.00 14.00 22.64 ± 0.00 106.00 - - 20.56 ± 0.00 214.00 17.65 ± 0.00 68.00 16.67 ± 0.00 12.00 50.00 ± 0.00 4.00 0.00 ± 0.00 1.00 19.46 ± 0.00 185.00 20.50 ± 0.00 200.00
FBK 16.67 ± 0.00 24.00 - - - - 21.26 ± 0.00 127.00 21.29 ± 0.00 249.00 17.65 ± 0.00 17.00 22.22 ± 0.00 99.00 0.00 ± 0.00 1.00 20.81 ± 0.00 197.00 20.93 ± 0.00 86.00 14.29 ± 0.00 14.00 0.00 ± 0.00 2.00 0.00 ± 0.00 1.00 22.16 ± 0.00 176.00 20.77 ± 0.00 207.00

Llama 3.3 70B

NBK 6.94 ± 6.36 9.33 15.88 ± 3.73 90.67 - - 19.53 ± 1.79 281.67 18.81 ± 9.44 13.67 - - 18.56 ± 4.54 43.33 25.92 ± 7.23 44.00 17.42 ± 1.51 304.00 8.33 ± 14.43 4.00 0.00 ± 0.00 2.33 14.36 ± 2.36 127.67 - - 20.64 ± 1.04 248.67 17.45 ± 11.23 16.67

BK 0.00 ± 0.00 6.00 14.65 ± 2.88 81.33 - - 21.86 ± 0.66 289.67 21.97 ± 3.47 20.00 - - 17.78 ± 1.01 58.00 28.11 ± 5.02 43.67 19.16 ± 0.93 290.33 25.56 ± 30.97 5.00 0.00 ± 0.00 1.33 14.51 ± 0.41 108.00 - - 22.79 ± 0.25 260.33 17.03 ± 0.95 27.33
SBK 0.00 ± 0.00 3.00 12.20 ± 0.00 82.00 - - 18.18 ± 0.00 286.00 18.75 ± 0.00 16.00 0.00 ± 0.00 1.00 13.95 ± 0.00 43.00 26.79 ± 0.00 56.00 15.49 ± 0.00 284.00 0.00 ± 0.00 3.00 0.00 ± 0.00 1.00 10.34 ± 0.00 116.00 - - 19.20 ± 0.00 250.00 25.00 ± 0.00 20.00
SABK 0.00 ± 0.00 4.00 9.86 ± 0.00 71.00 - - 20.33 ± 0.00 300.00 26.32 ± 0.00 19.00 - - 22.64 ± 0.00 53.00 25.00 ± 0.00 60.00 16.55 ± 0.00 278.00 0.00 ± 0.00 3.00 0.00 ± 0.00 2.00 10.00 ± 0.00 90.00 - - 21.22 ± 0.00 278.00 20.83 ± 0.00 24.00
FBK 0.00 ± 0.00 7.00 15.15 ± 0.00 99.00 - - 20.00 ± 0.00 275.00 26.67 ± 0.00 15.00 - - 26.83 ± 0.00 41.00 25.64 ± 0.00 39.00 16.72 ± 0.00 311.00 20.00 ± 0.00 5.00 0.00 ± 0.00 2.00 14.39 ± 0.00 139.00 - - 21.10 ± 0.00 237.00 22.22 ± 0.00 18.00

OpenAI O3

NBK - - 11.88 ± 5.53 19.33 - - 18.28 ± 1.50 384.67 0.00 ± 0.00 1.00 - - 0.00 ± 0.00 10.33 19.57 ± 1.53 356.00 7.37 ± 3.63 38.67 - - - - 6.36 ± 5.53 10.00 - - 18.66 ± 1.17 384.00 3.03 ± 5.25 11.00

BK - - 8.57 ± 9.67 16.33 - - 22.46 ± 2.60 387.33 83.33 ± 28.87 1.33 - - 19.78 ± 7.61 13.33 22.87 ± 2.23 364.33 13.21 ± 4.51 27.33 - - - - 12.22 ± 10.72 5.67 - - 22.35 ± 2.45 385.00 20.64 ± 9.61 14.33
SBK - - 0.00 ± 0.00 12.00 - - 20.67 ± 0.00 387.00 0.00 ± 0.00 6.00 - - 13.33 ± 0.00 30.00 21.43 ± 0.00 350.00 4.00 ± 0.00 25.00 - - - - 0.00 ± 0.00 4.00 - - 20.33 ± 0.00 369.00 15.62 ± 0.00 32.00
SABK - - 11.11 ± 0.00 9.00 0.00 ± 0.00 1.00 20.36 ± 0.00 393.00 50.00 ± 0.00 2.00 - - 18.52 ± 0.00 27.00 20.96 ± 0.00 353.00 12.00 ± 0.00 25.00 - - - - 0.00 ± 0.00 3.00 - - 20.70 ± 0.00 372.00 16.67 ± 0.00 30.00
FBK - - 18.18 ± 0.00 22.00 0.00 ± 0.00 1.00 16.75 ± 0.00 382.00 - - - - 0.00 ± 0.00 9.00 17.66 ± 0.00 351.00 13.33 ± 0.00 45.00 - - - - 23.08 ± 0.00 13.00 - - 16.67 ± 0.00 384.00 12.50 ± 0.00 8.00

Qwen 3 32B

NBK 0.00 ± 0.00 10.67 11.72 ± 0.71 20.00 - - 18.04 ± 1.61 332.33 11.90 ± 10.38 18.67 0.00 ± 0.00 0.67 5.56 ± 9.62 9.33 13.78 ± 0.65 46.00 18.39 ± 1.14 306.00 6.06 ± 6.94 19.67 0.00 ± 0.00 8.00 12.56 ± 4.08 52.33 - - 18.48 ± 2.14 307.67 5.88 ± 10.19 13.67

BK 20.00 ± 26.46 7.00 8.68 ± 7.63 14.00 0.00 ± 0.00 1.00 18.98 ± 0.83 330.33 17.39 ± 3.00 26.67 0.00 ± 0.00 0.67 9.89 ± 3.81 13.33 20.37 ± 5.50 56.67 18.55 ± 0.62 291.00 17.08 ± 4.02 17.33 8.33 ± 14.43 5.67 18.32 ± 8.59 33.00 0.00 ± 0.00 0.33 19.07 ± 0.58 321.67 10.92 ± 0.34 18.33
SBK 0.00 ± 0.00 7.00 20.00 ± 0.00 10.00 0.00 ± 0.00 1.00 17.34 ± 0.00 271.00 5.00 ± 0.00 20.00 - - 0.00 ± 0.00 10.00 24.44 ± 0.00 45.00 15.90 ± 0.00 239.00 6.67 ± 0.00 15.00 0.00 ± 0.00 5.00 12.50 ± 0.00 24.00 - - 17.16 ± 0.00 268.00 8.33 ± 0.00 12.00
SABK 0.00 ± 0.00 8.00 6.25 ± 0.00 16.00 - - 17.78 ± 0.00 315.00 17.95 ± 0.00 39.00 - - 5.26 ± 0.00 19.00 19.67 ± 0.00 61.00 18.41 ± 0.00 277.00 0.00 ± 0.00 21.00 0.00 ± 0.00 8.00 2.94 ± 0.00 34.00 - - 19.68 ± 0.00 310.00 7.69 ± 0.00 26.00
FBK 0.00 ± 0.00 12.00 13.04 ± 0.00 23.00 0.00 ± 0.00 1.00 17.52 ± 0.00 331.00 11.11 ± 0.00 18.00 - - 16.67 ± 0.00 12.00 14.00 ± 0.00 50.00 17.41 ± 0.00 293.00 10.00 ± 0.00 30.00 0.00 ± 0.00 8.00 15.52 ± 0.00 58.00 - - 16.99 ± 0.00 306.00 15.38 ± 0.00 13.00

Gemini 2.5-pro

NBK 0.00 ± 0.00 0.67 53.33 ± 18.86 2.67 - - 17.26 ± 1.24 129.00 16.61 ± 1.09 272.67 0.00 ± 0.00 3.67 15.85 ± 0.78 191.33 19.06 ± 2.46 100.00 18.18 ± 1.57 108.33 0.00 ± 0.00 1.67 0.00 ± 0.00 1.33 28.04 ± 5.57 9.33 - - 17.85 ± 1.88 136.00 16.25 ± 0.73 258.33

BK 16.67 ± 28.87 1.67 50.00 ± 50.00 2.67 - - 21.42 ± 0.49 129.00 23.33 ± 0.64 271.33 55.56 ± 19.25 3.00 22.61 ± 3.22 193.00 24.01 ± 8.57 96.33 21.14 ± 2.72 109.67 27.78 ± 25.46 2.67 8.33 ± 14.43 2.33 25.93 ± 14.46 13.00 - - 20.13 ± 1.14 139.00 24.22 ± 0.82 250.33
SBK - - 50.00 ± 0.00 4.00 - - 18.87 ± 0.00 106.00 20.77 ± 0.00 284.00 0.00 ± 0.00 5.00 19.82 ± 0.00 222.00 29.41 ± 0.00 68.00 16.33 ± 0.00 98.00 100.00 ± 0.00 1.00 - - 18.75 ± 0.00 16.00 - - 19.63 ± 0.00 107.00 21.03 ± 0.00 271.00
SABK - - 0.00 ± 0.00 4.00 - - 22.55 ± 0.00 102.00 18.12 ± 0.00 298.00 0.00 ± 0.00 8.00 20.27 ± 0.00 222.00 23.38 ± 0.00 77.00 14.74 ± 0.00 95.00 0.00 ± 0.00 2.00 0.00 ± 0.00 1.00 12.50 ± 0.00 8.00 - - 19.47 ± 0.00 113.00 19.15 ± 0.00 282.00
FBK - - 33.33 ± 0.00 6.00 - - 14.18 ± 0.00 134.00 20.00 ± 0.00 265.00 0.00 ± 0.00 2.00 17.39 ± 0.00 184.00 24.74 ± 0.00 97.00 15.13 ± 0.00 119.00 0.00 ± 0.00 3.00 0.00 ± 0.00 1.00 17.65 ± 0.00 17.00 - - 15.71 ± 0.00 140.00 19.84 ± 0.00 247.00

Qwen 3 235B

NBK 6.67 ± 11.55 4.67 0.00 ± 0.00 2.00 0.00 ± 0.00 0.33 16.36 ± 3.15 85.67 16.99 ± 0.60 312.00 21.04 ± 2.95 38.33 16.48 ± 0.76 273.33 17.65 ± 2.66 62.33 12.11 ± 4.64 23.33 9.52 ± 16.50 7.33 7.41 ± 12.83 8.67 10.29 ± 1.36 19.67 0.00 ± 0.00 0.33 17.42 ± 2.65 71.00 17.16 ± 0.47 305.00

BK 0.00 ± 0.00 2.33 4.76 ± 8.25 3.33 - - 13.54 ± 3.08 66.67 21.98 ± 1.66 332.00 20.90 ± 7.35 44.00 22.05 ± 2.69 283.67 15.45 ± 8.15 52.00 10.18 ± 6.19 20.67 8.33 ± 14.43 4.00 0.00 ± 0.00 4.67 9.70 ± 10.01 13.00 - - 14.24 ± 6.41 61.00 22.20 ± 1.88 325.67
SBK 0.00 ± 0.00 5.00 0.00 ± 0.00 1.00 - - 17.86 ± 0.00 56.00 17.65 ± 0.00 340.00 22.92 ± 0.00 48.00 17.51 ± 0.00 297.00 18.18 ± 0.00 33.00 5.26 ± 0.00 19.00 0.00 ± 0.00 5.00 0.00 ± 0.00 6.00 9.09 ± 0.00 11.00 - - 19.15 ± 0.00 47.00 17.75 ± 0.00 338.00
SABK 0.00 ± 0.00 3.00 - - - - 11.54 ± 0.00 52.00 21.26 ± 0.00 348.00 16.33 ± 0.00 49.00 22.00 ± 0.00 300.00 13.89 ± 0.00 36.00 6.67 ± 0.00 15.00 0.00 ± 0.00 3.00 0.00 ± 0.00 4.00 11.11 ± 0.00 9.00 - - 11.63 ± 0.00 43.00 21.33 ± 0.00 347.00
FBK 9.09 ± 0.00 11.00 0.00 ± 0.00 4.00 - - 17.35 ± 0.00 98.00 19.79 ± 0.00 288.00 21.05 ± 0.00 38.00 19.76 ± 0.00 253.00 13.43 ± 0.00 67.00 22.58 ± 0.00 31.00 8.33 ± 0.00 12.00 7.69 ± 0.00 13.00 27.27 ± 0.00 22.00 - - 12.94 ± 0.00 85.00 20.28 ± 0.00 281.00

OpenAI O4-mini

NBK - - 8.21 ± 5.70 39.67 100.00 ± 0.00 0.33 17.30 ± 2.22 358.33 0.00 ± 0.00 6.00 - - 17.78 ± 3.54 153.67 17.18 ± 1.59 208.00 6.35 ± 0.83 41.67 0.00 ± 0.00 1.00 0.00 ± 0.00 0.33 9.42 ± 1.98 88.00 33.33 ± 57.74 2.67 18.33 ± 2.72 298.33 15.54 ± 3.13 15.00

BK 0.00 ± 0.00 0.33 1.33 ± 2.31 25.67 0.00 ± 0.00 0.33 20.86 ± 2.29 363.00 38.18 ± 6.42 14.67 - - 25.64 ± 1.42 158.33 18.33 ± 5.69 219.00 2.48 ± 2.17 26.00 0.00 ± 0.00 0.67 - - 7.20 ± 1.50 65.67 0.00 ± 0.00 0.67 21.70 ± 3.24 308.33 34.19 ± 4.45 29.33
SBK - - 4.76 ± 0.00 21.00 - - 14.99 ± 0.00 367.00 11.76 ± 0.00 17.00 - - 17.61 ± 0.00 159.00 13.33 ± 0.00 210.00 5.56 ± 0.00 36.00 - - - - 2.27 ± 0.00 44.00 20.00 ± 0.00 5.00 15.72 ± 0.00 318.00 15.79 ± 0.00 38.00
SABK - - 9.52 ± 0.00 21.00 - - 19.33 ± 0.00 357.00 22.22 ± 0.00 27.00 - - 23.42 ± 0.00 158.00 17.27 ± 0.00 220.00 7.41 ± 0.00 27.00 - - - - 13.04 ± 0.00 46.00 0.00 ± 0.00 2.00 19.08 ± 0.00 325.00 28.12 ± 0.00 32.00
FBK 0.00 ± 0.00 3.00 14.29 ± 0.00 35.00 - - 19.05 ± 0.00 357.00 20.00 ± 0.00 10.00 - - 21.71 ± 0.00 152.00 18.00 ± 0.00 200.00 11.54 ± 0.00 52.00 0.00 ± 0.00 1.00 - - 7.59 ± 0.00 79.00 0.00 ± 0.00 1.00 21.31 ± 0.00 305.00 20.00 ± 0.00 20.00

Llama 3.1 8B

NBK 0.00 ± 0.00 2.00 0.00 ± 0.00 2.67 0.00 ± 0.00 1.00 16.35 ± 2.07 277.67 12.35 ± 2.79 102.33 9.52 ± 16.50 6.00 13.40 ± 2.00 25.00 15.75 ± 0.75 148.67 15.03 ± 1.62 190.33 10.00 ± 10.00 15.67 0.00 ± 0.00 4.00 12.50 ± 12.50 16.67 11.11 ± 9.62 6.33 15.07 ± 1.54 325.33 18.39 ± 4.45 33.33

BK 25.00 ± 35.36 1.33 0.00 ± 0.00 3.67 0.00 ± 0.00 0.33 16.41 ± 0.96 276.00 17.59 ± 1.60 102.67 4.76 ± 8.25 7.00 17.48 ± 9.91 26.33 19.68 ± 2.06 159.00 13.89 ± 2.88 177.00 20.40 ± 9.93 14.67 16.67 ± 14.43 4.33 12.22 ± 6.74 14.67 8.33 ± 14.43 3.33 17.01 ± 1.28 325.00 14.60 ± 6.01 36.67
SBK 0.00 ± 0.00 2.00 0.00 ± 0.00 4.00 - - 16.06 ± 0.00 274.00 13.73 ± 0.00 102.00 0.00 ± 0.00 2.00 3.85 ± 0.00 26.00 18.13 ± 0.00 171.00 14.37 ± 0.00 167.00 12.50 ± 0.00 16.00 0.00 ± 0.00 2.00 10.00 ± 0.00 10.00 50.00 ± 0.00 6.00 15.71 ± 0.00 331.00 6.06 ± 0.00 33.00
SABK 0.00 ± 0.00 1.00 33.33 ± 0.00 3.00 0.00 ± 0.00 1.00 16.73 ± 0.00 251.00 13.60 ± 0.00 125.00 0.00 ± 0.00 4.00 14.29 ± 0.00 49.00 14.18 ± 0.00 134.00 16.29 ± 0.00 178.00 31.25 ± 0.00 16.00 25.00 ± 0.00 4.00 29.41 ± 0.00 17.00 0.00 ± 0.00 2.00 14.94 ± 0.00 308.00 16.00 ± 0.00 50.00
FBK 0.00 ± 0.00 2.00 0.00 ± 0.00 5.00 - - 14.89 ± 0.00 282.00 21.78 ± 0.00 101.00 0.00 ± 0.00 4.00 23.81 ± 0.00 21.00 14.94 ± 0.00 154.00 16.49 ± 0.00 194.00 23.53 ± 0.00 17.00 28.57 ± 0.00 7.00 20.00 ± 0.00 15.00 0.00 ± 0.00 8.00 15.96 ± 0.00 332.00 21.43 ± 0.00 28.00

Table 6: Different versions of Gemini, OpenAI, Claude Sonnet, Llama, Qwen, and Deepseek evaluated on different levels of
human-rated confidence, difficulty, and feasibility scores. Best values within each family are highlighted.

Model Exp.

Confidence Difficulty Feasibility

L1 L2 L3 L4 L5 L1 L2 L3 L4 L5 L1 L2 L3 L4 L5

Acc (%) # Que. Acc (%) # Que. Acc (%) # Que. Acc (%) # Que. Acc (%) # Que. Acc (%) # Que. Acc (%) # Que. Acc (%) # Que. Acc (%) # Que. Acc (%) # Que. Acc (%) # Que. Acc (%) # Que. Acc (%) # Que. Acc (%) # Que.

Gemini 3-pro NBK 17.33 ± 1.15 50 22.57 ± 2.41 96 26.45 ± 0.63 92 26.76 ± 4.16 147 41.67 ± 5.77 20 36.67 ± 5.77 10 30.26 ± 3.87 65 29.84 ± 4.27 124 21.51 ± 0.41 141 17.95 ± 2.35 65 20.00 ± 0.00 65 20.74 ± 1.96 135 20.41 ± 5.40 49 28.97 ± 3.24 107 41.50 ± 5.89 49

BK 18.00 ± 2.00 50 25.32 ± 3.35 79 26.52 ± 3.47 88 28.69 ± 0.97 158 43.33 ± 3.33 30 41.67 ± 3.61 16 25.98 ± 0.85 68 33.89 ± 1.73 120 23.56 ± 1.57 133 21.08 ± 1.70 68 20.00 ± 3.08 65 21.48 ± 0.74 135 25.17 ± 5.14 49 31.15 ± 2.70 107 46.94 ± 0.00 49

Claude Opus 4.5 NBK 14.00 ± 2.00 50 22.22 ± 3.94 96 25.72 ± 3.49 92 22.68 ± 1.71 147 40.00 ± 5.00 20 20.00 ± 10.00 10 27.18 ± 2.35 65 27.96 ± 2.03 124 21.28 ± 0.71 141 13.85 ± 3.08 65 12.31 ± 1.54 65 19.01 ± 1.13 135 14.97 ± 2.36 49 27.10 ± 1.62 107 47.62 ± 1.18 49

BK 23.33 ± 4.16 50 22.78 ± 3.35 79 22.73 ± 3.41 88 29.32 ± 1.46 158 48.89 ± 1.92 30 29.17 ± 3.61 16 39.22 ± 0.85 68 30.00 ± 0.83 120 23.06 ± 1.15 133 18.63 ± 1.70 68 15.38 ± 0.00 65 21.48 ± 0.74 135 21.09 ± 1.18 49 32.40 ± 2.16 107 54.42 ± 4.71 49

Claude Sonnet 4.5 NBK 21.33 ± 1.15 50 22.22 ± 1.20 96 21.01 ± 1.26 92 23.13 ± 1.80 147 30.00 ± 0.00 20 20.00 ± 0.00 10 30.26 ± 0.89 65 22.31 ± 2.03 124 21.28 ± 0.71 141 18.46 ± 1.54 65 15.90 ± 0.89 65 20.49 ± 1.13 135 13.61 ± 2.36 49 28.04 ± 0.93 107 34.01 ± 4.25 49

BK 23.33 ± 4.16 50 23.21 ± 4.07 79 21.21 ± 2.37 88 31.65 ± 2.90 158 34.44 ± 1.92 30 25.00 ± 0.00 16 38.73 ± 4.25 68 30.56 ± 1.92 120 21.30 ± 1.89 133 20.10 ± 3.06 68 18.97 ± 2.35 65 21.98 ± 1.86 135 16.33 ± 3.53 49 35.83 ± 4.42 107 42.18 ± 1.18 49

Claude Opus 4.1 NBK 16.67 ± 2.31 50 23.96 ± 2.08 96 21.74 ± 1.09 92 22.68 ± 2.83 147 26.67 ± 2.89 20 20.00 ± 0.00 10 28.21 ± 2.35 65 23.12 ± 0.93 124 21.04 ± 2.28 141 17.44 ± 0.89 65 17.44 ± 2.35 65 18.77 ± 2.14 135 12.93 ± 3.12 49 25.55 ± 1.08 107 40.14 ± 1.18 49

BK 22.67 ± 3.06 50 24.47 ± 2.64 79 25.38 ± 0.66 88 24.89 ± 0.73 158 35.56 ± 1.92 30 29.17 ± 3.61 16 29.90 ± 0.85 68 27.78 ± 1.73 120 23.31 ± 1.99 133 20.10 ± 3.06 68 21.54 ± 1.54 65 19.26 ± 1.96 135 17.01 ± 2.36 49 30.53 ± 1.95 107 44.90 ± 0.00 49

Gemini 3-Flash NBK 18.67 ± 3.06 50 19.10 ± 0.60 96 25.36 ± 1.66 92 22.22 ± 2.19 147 31.67 ± 7.64 20 26.67 ± 5.77 10 24.62 ± 2.66 65 20.97 ± 2.42 124 21.75 ± 1.08 141 22.56 ± 4.70 65 23.59 ± 3.20 65 20.25 ± 1.13 135 10.20 ± 2.04 49 22.74 ± 0.54 107 36.73 ± 3.53 49

BK 17.33 ± 3.06 50 22.78 ± 1.27 79 22.35 ± 3.99 88 24.26 ± 1.59 158 41.11 ± 1.92 30 37.50 ± 0.00 16 25.98 ± 2.25 68 25.28 ± 2.41 120 21.30 ± 2.42 133 21.57 ± 1.70 68 16.41 ± 0.89 65 21.98 ± 1.54 135 14.29 ± 3.53 49 27.73 ± 2.16 107 40.82 ± 3.53 49

OpenAI GPT-5.2 NBK 18.67 ± 2.31 50 22.22 ± 1.59 96 18.84 ± 0.63 92 19.95 ± 3.07 147 30.00 ± 5.00 20 13.33 ± 5.77 10 27.18 ± 1.78 65 17.20 ± 0.47 124 22.22 ± 1.78 141 17.95 ± 0.89 65 12.82 ± 0.89 65 20.74 ± 1.48 135 10.20 ± 3.53 49 21.18 ± 1.95 107 39.46 ± 3.12 49

BK 22.67 ± 5.03 50 20.25 ± 1.27 79 18.94 ± 0.66 88 23.21 ± 2.40 158 38.89 ± 5.09 30 27.08 ± 3.61 16 30.88 ± 3.89 68 24.17 ± 2.20 120 19.05 ± 2.64 133 18.63 ± 3.06 68 13.33 ± 3.55 65 19.51 ± 0.86 135 12.93 ± 3.12 49 25.86 ± 3.78 107 47.62 ± 5.14 49

Human Baseline NBK 12.00 50 12.50 96 17.39 92 28.57 147 30.00 20 30.00 10 33.85 65 25.81 124 13.48 141 9.23 65 3.08 65 5.93 135 12.24 49 27.10 107 75.51 49

BK 14.00 50 10.13 79 18.18 88 27.85 158 33.33 30 31.25 16 33.82 68 26.67 120 14.29 133 8.82 68 3.08 65 5.19 135 12.24 49 28.97 107 79.59 49

OpenAI O3-mini NBK 16.00 ± 5.29 50 19.79 ± 1.80 96 14.49 ± 0.63 92 23.13 ± 0.68 147 30.00 ± 5.00 20 13.33 ± 5.77 10 27.18 ± 0.89 65 16.40 ± 1.23 124 20.33 ± 0.82 141 18.97 ± 6.22 65 10.77 ± 3.08 65 19.01 ± 2.26 135 16.33 ± 7.36 49 19.31 ± 1.95 107 38.78 ± 0.00 49

BK 12.67 ± 1.15 50 17.72 ± 0.00 79 18.56 ± 0.66 88 24.89 ± 1.32 158 35.56 ± 5.09 30 20.83 ± 3.61 16 36.27 ± 3.06 68 18.61 ± 0.48 120 19.05 ± 1.15 133 16.18 ± 1.47 68 9.74 ± 0.89 65 15.31 ± 1.13 135 20.41 ± 3.53 49 25.23 ± 3.24 107 46.26 ± 3.12 49

DeepSeek v3 NBK 14.00 ± 4.00 50 20.49 ± 3.18 96 16.67 ± 3.14 92 21.09 ± 2.45 147 23.33 ± 5.77 20 16.67 ± 5.77 10 21.03 ± 2.35 65 21.24 ± 1.23 124 17.49 ± 2.69 141 17.44 ± 2.35 65 12.31 ± 3.08 65 14.32 ± 1.86 135 13.61 ± 7.17 49 25.23 ± 3.37 107 34.01 ± 1.18 49

BK 20.00 ± 3.46 50 19.41 ± 1.93 79 18.94 ± 1.31 88 24.89 ± 2.99 158 25.56 ± 3.85 30 16.67 ± 3.61 16 30.88 ± 2.55 68 19.44 ± 2.55 120 22.06 ± 1.57 133 18.63 ± 4.25 68 15.90 ± 1.78 65 18.77 ± 3.50 135 10.20 ± 2.04 49 28.04 ± 3.24 107 37.41 ± 4.25 49

Llama 3.3 70B NBK 10.67 ± 1.15 50 18.75 ± 1.04 96 12.68 ± 3.32 92 23.81 ± 0.68 147 18.33 ± 5.77 20 10.00 ± 0.00 10 23.08 ± 1.54 65 17.74 ± 1.40 124 20.80 ± 1.48 141 9.74 ± 0.89 65 8.72 ± 1.78 65 15.31 ± 1.54 135 8.16 ± 0.00 49 24.30 ± 0.93 107 35.37 ± 1.18 49

BK 15.33 ± 2.31 50 21.52 ± 1.27 79 18.94 ± 0.66 88 20.89 ± 1.10 158 20.00 ± 3.33 30 18.75 ± 6.25 16 19.12 ± 0.00 68 20.00 ± 0.00 120 22.31 ± 1.74 133 15.69 ± 0.85 68 11.79 ± 2.35 65 15.56 ± 1.48 135 10.20 ± 2.04 49 28.04 ± 0.93 107 34.01 ± 1.18 49

OpenAI O3 NBK 11.33 ± 1.15 50 17.01 ± 2.62 96 18.48 ± 2.17 92 19.95 ± 0.39 147 21.67 ± 7.64 20 6.67 ± 5.77 10 22.56 ± 2.35 65 20.70 ± 2.83 124 15.37 ± 1.48 141 15.38 ± 1.54 65 13.33 ± 3.87 65 11.36 ± 2.14 135 15.65 ± 2.36 49 20.56 ± 2.47 107 38.78 ± 5.40 49

BK 20.67 ± 4.16 50 18.57 ± 8.24 79 17.80 ± 3.65 88 23.63 ± 1.93 158 38.89 ± 3.85 30 14.58 ± 7.22 16 32.84 ± 1.70 68 23.61 ± 3.47 120 17.29 ± 5.68 133 20.10 ± 3.70 68 15.38 ± 2.66 65 15.80 ± 2.38 135 19.05 ± 1.18 49 25.86 ± 5.31 107 43.54 ± 1.18 49

Qwen 3 32B NBK 18.00 ± 4.00 50 17.71 ± 1.80 96 11.59 ± 3.32 92 19.95 ± 0.79 147 15.00 ± 5.00 20 10.00 ± 0.00 10 17.44 ± 0.89 65 15.32 ± 1.40 124 18.91 ± 0.82 141 16.92 ± 4.62 65 9.74 ± 1.78 65 16.79 ± 1.13 135 7.48 ± 2.36 49 19.63 ± 3.37 107 31.29 ± 4.25 49

BK 22.00 ± 3.46 50 12.66 ± 1.27 79 15.91 ± 1.14 88 21.52 ± 1.67 158 27.78 ± 1.92 30 25.00 ± 0.00 16 21.57 ± 3.06 68 17.22 ± 2.10 120 18.80 ± 1.50 133 19.12 ± 1.47 68 11.28 ± 3.87 65 17.78 ± 0.74 135 10.88 ± 4.71 49 21.81 ± 3.54 107 35.37 ± 1.18 49

Gemini 2.5-pro NBK 18.00 ± 2.00 50 16.32 ± 3.66 96 18.84 ± 2.26 92 13.83 ± 2.08 147 33.33 ± 2.89 20 13.33 ± 5.77 10 22.56 ± 4.44 65 18.82 ± 2.33 124 15.37 ± 3.35 141 12.31 ± 1.54 65 10.77 ± 1.54 65 10.37 ± 2.96 135 11.56 ± 6.56 49 20.25 ± 0.54 107 42.18 ± 4.25 49

BK 21.33 ± 3.06 50 18.99 ± 2.53 79 21.97 ± 2.37 88 22.15 ± 0.63 158 42.22 ± 1.92 30 31.25 ± 6.25 16 30.39 ± 3.06 68 22.78 ± 0.48 120 20.55 ± 0.43 133 18.14 ± 1.70 68 14.36 ± 2.35 65 13.83 ± 0.43 135 21.09 ± 4.25 49 28.35 ± 1.95 107 48.98 ± 7.07 49

Qwen 3 235B NBK 18.00 ± 3.46 50 17.01 ± 3.35 96 11.59 ± 1.26 92 18.82 ± 1.04 147 18.33 ± 5.77 20 6.67 ± 5.77 10 21.03 ± 3.20 65 16.40 ± 0.47 124 17.73 ± 1.23 141 11.79 ± 2.35 65 8.21 ± 2.35 65 15.31 ± 2.60 135 6.12 ± 2.04 49 19.63 ± 1.87 107 35.37 ± 5.14 49

BK 18.00 ± 0.00 50 18.57 ± 0.73 79 14.77 ± 1.14 88 22.78 ± 1.10 158 32.22 ± 6.94 30 22.92 ± 3.61 16 28.43 ± 3.40 68 19.17 ± 1.67 120 20.55 ± 1.57 133 13.24 ± 0.00 68 8.72 ± 0.89 65 16.05 ± 1.71 135 11.56 ± 1.18 49 27.10 ± 1.62 107 41.50 ± 9.64 49

OpenAI O4-mini NBK 9.33 ± 1.15 50 12.50 ± 1.04 96 15.94 ± 3.14 92 20.18 ± 3.99 147 23.33 ± 7.64 20 3.33 ± 5.77 10 25.13 ± 2.35 65 15.32 ± 2.91 124 16.55 ± 4.33 141 10.26 ± 1.78 65 7.18 ± 2.35 65 10.37 ± 2.67 135 11.56 ± 5.14 49 18.69 ± 3.37 107 43.54 ± 4.25 49

BK 12.00 ± 4.00 50 18.57 ± 2.64 79 15.53 ± 2.86 88 23.00 ± 2.64 158 36.67 ± 3.33 30 18.75 ± 6.25 16 32.35 ± 2.94 68 19.44 ± 2.68 120 18.55 ± 4.14 133 12.75 ± 2.25 68 7.69 ± 1.54 65 13.33 ± 1.96 135 17.69 ± 4.25 49 25.23 ± 3.24 107 46.94 ± 7.36 49

Llama 3.1 8B NBK 9.33 ± 5.03 50 11.81 ± 2.17 96 15.22 ± 1.09 92 18.14 ± 3.14 147 13.33 ± 2.89 20 23.33 ± 11.55 10 16.92 ± 3.08 65 16.13 ± 0.81 124 13.48 ± 2.84 141 10.77 ± 4.07 65 12.82 ± 0.89 65 12.35 ± 2.38 135 12.24 ± 2.04 49 13.71 ± 1.43 107 27.89 ± 4.71 49

BK 10.00 ± 2.00 50 13.50 ± 2.92 79 15.15 ± 1.31 88 18.57 ± 1.32 158 18.89 ± 5.09 30 18.75 ± 6.25 16 23.53 ± 2.94 68 14.44 ± 1.27 120 15.29 ± 3.47 133 10.78 ± 1.70 68 11.28 ± 1.78 65 14.07 ± 2.57 135 10.88 ± 1.18 49 16.20 ± 2.16 107 30.61 ± 2.04 49
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Table 7: Different versions of Gemini, OpenAI, Claude Sonnet, Llama, Qwen, and Deepseek evaluated on their ability to
answer questions based on required background knowledge needed to answer questions.

Model # Corr. # Ques. Acc (%)

Gemini 3-pro 1268 1350 93.93
Claude Opus 4.5 1277 1344 95.01
Claude Sonnet 4.5 1232 1316 93.62
Claude Opus 4.1 1228 1327 92.54
Gemini 3-Flash 1279 1350 94.74
OpenAI GPT-5.2 1276 1350 94.52
OpenAI O3-mini 1250 1350 92.59
DeepSeek v3 1234 1353 91.20
Llama 3.3 70B 1132 1350 83.85
OpenAI O3 1261 1350 93.41
Qwen 3 32B 1149 1342 85.62
Gemini 2.5-pro 1246 1350 92.30
Qwen 3 235B 1222 1350 90.52
OpenAI O4-mini 1252 1350 92.74
Llama 3.1 8B 955 1329 71.86
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Figure 13: Analysis of model errors for high feasible questions. We employ an LLM judge to systematically classify errors
in model predictions according to a hierarchical taxonomy spanning five top-level (in black background) categories and 16
specific error types. The heatmap shows the percentage of incorrect responses containing each error type for each evaluated
model. Error categories progress from surface-level issues (Comprehension & Scope) to deeper reasoning failures (Logical
& Reasoning Flaws) to fundamental scientific deficiencies (Deficiencies in Scientific Rigor). Models can exhibit multiple
error types simultaneously, so accumulative percentage scores within top-level categories may exceed 100%. SciPredict tasks
contribute to top-level category percentages if flagged with at least one underlying error type. Error analysis only considers the
questions human experts marked as feasible to answer without running the practical experiment.
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D. Prompts

Prompt used for errors analysis judge

[SYS]
Fields: domain, field

Instructions: You are acting as a judge evaluating a ‘suggested_answer‘ to a scientific ‘question‘ (of type ‘
question_type‘) which corresponds to the prediction of the outcome of a scientific experiment in {domain}
and the field of {field}. Your goal is to identify the reason(s) why the provided answer is flawed or

incorrect when compared to the ‘ground_truth_answer‘ and the provided ‘experimental_setup‘, ‘
measurements_taken‘, and ‘background_knowledge‘. Carefully review the provided materials and provide
your judgment based on the rigorous definitions below. Your judgment should be based on a detailed
analysis of the ‘suggested_answer‘’s reasoning and factual claims.

Evaluation Materials and Terminology:
- ‘question‘: The scientific question posed to the responder for prediction of the experimental outcome.
- ‘experimental_setup‘: Details of the experimental design, conditions, and procedures relevant to the ‘question

‘ provided to the responder for prediction of the experimental outcome.
- ‘measurements_taken‘: Information about the measurements taken relevant to the ‘question‘ provided to the

responder for prediction of the experimental outcome.
- ‘background_knowledge‘ (if any): Additional scientific context or principles relevant to the ‘question‘

provided to the responder for prediction of the experimental outcome.
- ‘suggested_answer‘: The responder’s answer to the ‘question‘, including any reasoning or justification

provided.
- ‘ground_truth_answer‘: The ground truth answer to the ‘question‘, representing the correct prediction of the

experimental outcome based on the provided materials.

Question Types:
- Multiple-Choice (MCQ): Includes a set of possible answers from which one (1) OR more (>1) must be

selected.
- Free-Form: Requires a comprehensive but concise explanation of the expected experimental results.
- Numerical: Requires a specific numerical value prediction based on the provided data for the outcome of

the experiment described in the question.

Error Analysis Categories:
1. Comprehension & Scope Errors: The answer fails because it fundamentally misunderstands the user’s

question or violates its core constraints. This is the primary error if the answer, regardless of its
correctness, is for the wrong question.

2. Factual & Extraction Errors: The answer fails because it incorrectly handles explicit information from
the provided ‘experimental_setup‘, ‘measurements_taken‘, or ‘background_knowledge‘. It omits,
fabricates, or directly contradicts facts that are clearly stated.

3. Logical & Reasoning Flaws: The answer fails because the argument is logically unsound, even if the
individual facts cited are correct. The connections between evidence and conclusion are invalid.

4. Deficiencies in Scientific Rigor: The answer fails because it lacks the necessary nuance and rigor expected
in scientific communication. It may be factually correct but is presented with false certainty or

violates a core scientific principle.
5. Formatting & Mechanical Bug: The answer fails due to a non-substantive formatting error.

Detailed Analysis Flags:
First, choose a PRIMARY ERROR CATEGORY from the five main categories above that best explains WHY

the ‘suggested_answer‘ is flawed or incorrect. For this choice of the primary error category, provide a
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comprehensive justification (4-5 sentences) explaining your judgment.

Second, for EACH flag below (INCLUDING from ALL categories, NOT just the one you selected), choose YES,
NO, or N/A based on the strict definitions provided:

1. Comprehension & Scope Errors
- ‘flag_task_misinterpretation‘:

- Evidence Source: ‘question‘, ‘suggested_answer‘.
- Definition: Whether the ‘suggested_answer‘ addresses a fundamentally different question than the one

posed.
- Prerequisite: None.
- ‘YES‘: The answer’s core purpose is different from the question’s intent or it addresses a different scientific

question than was asked.
- ‘NO‘: The conditions for ‘YES‘ are NOT satisfied.

- ‘flag_constraint_violation‘:
- Evidence Source: ‘question‘, ‘suggested_answer‘.
- Definition: Whether the ‘suggested_answer‘ ignores a specific instruction or constraint mentioned in the ‘

question‘.
- Prerequisite: The ‘question‘ contains an explicit constraint.
- ‘YES‘: The answer violates an explicit constraint in the question.
- ‘NO‘: The prerequisite IS met, but the conditions for ‘YES‘ are NOT satisfied.
- ‘N/A‘: The prerequisite is NOT met.

- ‘flag_insufficient_specificity‘:
- Evidence Source: ‘question‘, ‘suggested_answer‘, ‘ground_truth_answer‘.
- Definition: Whether the ‘suggested_answer‘ is overly generic or lacks the required detail.
- Prerequisite: None.
- ‘YES‘: The answer is too high-level and omits details that are necessary to fully address the question, as

evidenced by the ‘ground_truth_answer‘.
- ‘NO‘: The conditions for ‘YES‘ are NOT satisfied.

- ‘flag_irrelevant_information‘:
- Evidence Source: ‘question‘, ‘suggested_answer‘, ‘ground_truth_answer‘.
- Definition: Whether the ‘suggested_answer‘ includes factually correct but non-essential information.
- Prerequisite: None.
- ‘YES‘: The answer contains information that does not help answer the specific ‘question‘.
- ‘NO‘: The conditions for ‘YES‘ are NOT satisfied.

2. Factual & Extraction Errors
- ‘flag_information_omission‘:

- Evidence Source: ‘experimental_setup‘, ‘measurements_taken‘, ‘background_knowledge‘, ‘suggested_
answer‘.

- Definition: Whether the ‘suggested_answer‘ fails to extract or reports as "missing" a REQUIRED piece of
data explicitly present in the provided materials.

- Prerequisite: The information is explicitly stated in the ‘experimental_setup‘, ‘measurements_taken‘, or ‘
background_knowledge‘ AND the information is REQUIRED for answering the question.

- ‘YES‘: A key fact, value, or condition from the provided materials is missing from, or was ignored in the ‘
suggested_answer‘.

- ‘NO‘: The prerequisite IS met, but the conditions for ‘YES‘ are NOT satisfied.
- ‘N/A‘: The prerequisite is NOT met.

- ‘flag_factual_contradiction‘:
- Evidence Source: ‘experimental_setup‘, ‘measurements_taken‘, ‘background_knowledge‘, ‘suggested_

answer‘.
- Definition: Whether the ‘suggested_answer‘ directly misrepresents or contradicts facts, values, or

relationships stated in the provided materials.
- Prerequisite: None.
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- ‘YES‘: A statement in the ‘suggested_answer‘ is verifiably FALSE when checked against the provided
materials.

- ‘NO‘: The conditions for ‘YES‘ are NOT satisfied.

- ‘flag_information_fabrication‘:
- Evidence Source: ‘experimental_setup‘, ‘measurements_taken‘, ‘background_knowledge‘, ‘suggested_

answer‘.
- Definition: Whether the ‘suggested_answer‘ invents data, formulas, or external "facts" not supported by

the provided materials.
- Prerequisite: None.
- ‘YES‘: The answer includes specific information that cannot be found in or reasonably inferred from the

provided materials.
- ‘NO‘: The conditions for ‘YES‘ are NOT satisfied.

- ‘flag_detail_omission_in_reasoning‘:
- Evidence Source: ‘experimental_setup‘, ‘measurements_taken‘, ‘background_knowledge‘, ‘suggested_

answer‘.
- Definition: Whether the reasoning in the ‘suggested_answer‘ omits a CRITICAl piece of evidence from the

provided materials that is necessary to logically support its OWN conclusion.
- Prerequisite: The ‘suggested_answer‘ presents a logical argument or reasoning.
- ‘YES‘: The argument or reasoning provided for the answer is incomplete because a necessary premise from

the provided materials is missing.
- ‘NO‘: The prerequisite IS met, but the conditions for ‘YES‘ are NOT satisfied.
- ‘N/A‘: The prerequisite is NOT met.

3. Logical & Reasoning Flaws
- ‘flag_tautological_reasoning‘:

- Evidence Source: ‘suggested_answer‘.
- Definition: Whether the justification restates the conclusion without providing independent evidence.
- Prerequisite: The ‘suggested_answer‘ provides a justification or reasoning.
- ‘YES‘: The reasoning is circular, using the conclusion as its own evidence.
- ‘NO‘: The prerequisite IS met, but the conditions for ‘YES‘ are NOT satisfied.
- ‘N/A‘: The prerequisite is NOT met.

- ‘flag_unsupported_assumption‘:
- Evidence Source: ‘experimental_setup‘, ‘measurements_taken‘, ‘background_knowledge‘, ‘suggested_

answer‘.
- Definition: Whether the reasoning relies on a significant, unstated assumption that is NOT supported by

the provided materials.
- Prerequisite: The ‘suggested_answer‘ presents a logical argument or reasoning.
- ‘YES‘: The logical leap from evidence to conclusion requires an assumption that is NOT provided or

justified by the provided materials.
- ‘NO‘: The prerequisite IS met, but the conditions for ‘YES‘ are NOT satisfied.
- ‘N/A‘: The prerequisite is NOT met.

- ‘flag_disconnected_reasoning‘:
- Evidence Source: ‘suggested_answer‘.
- Definition: Whether the ‘suggested_answer‘ lists correct facts but fails to logically connect them to the

final conclusion.
- Prerequisite: The ‘suggested_answer‘ presents more than one (>1) piece of evidence in its reasoning.
- ‘YES‘: NO logical connection is made between the evidence presented and the conclusion drawn.
- ‘NO‘: The prerequisite IS met, but the conditions for ‘YES‘ are NOT satisfied.
- ‘N/A‘: The prerequisite is NOT met.

- ‘flag_oversimplified_causality‘:
- Evidence Source: ‘experimental_setup‘, ‘measurements_taken‘, ‘background_knowledge‘, ‘suggested_

answer‘.
- Definition: Whether the reasoning focuses on a minor cause while ignoring a more critical or explicitly

stated factor impacting the conclusion to be made from the provided materials.
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- Prerequisite: The provided materials present multiple potential causal factors.
- ‘YES‘: The reasoning incorrectly prioritizes a secondary factor over the primary factor described in the

provided materials.
- ‘NO‘: The prerequisite IS met, but the conditions for ‘YES‘ are NOT satisfied.
- ‘N/A‘: The prerequisite is NOT met.

4. Deficiencies in Scientific Rigor
- ‘flag_false_certainty‘:

- Evidence Source: ‘experimental_setup‘, ‘measurements_taken‘, ‘background_knowledge‘, ‘suggested_
answer‘.

- Definition: Whether the ‘suggested_answer‘ presents a probabilistic, correlational, or uncertain outcome
as a definitive fact.

- Prerequisite: The outcome described in the provided materials or ‘ground_truth_answer‘ is NON-
deterministic.

- ‘YES‘: The answer uses absolute language where uncertainty or probability is warranted.
- ‘NO‘: The prerequisite IS met, but the conditions for ‘YES‘ are NOT satisfied.
- ‘N/A‘: The prerequisite is NOT met.

- ‘flag_violation_of_foundational_principles‘:
- Evidence Source: ‘suggested_answer‘.
- Definition: Whether the reasoning in the ‘suggested_answer‘ is scientifically invalid because it violates a

fundamental, universally accepted scientific principle.
- Prerequisite: The ‘suggested_answer‘ invokes reasoning related to a known scientific principle.
- ‘YES‘: The reasoning makes a statement that is verifiably FALSE according to a FOUNDATIONAL

scientific principle.
- ‘NO‘: The prerequisite IS met, but the conditions for ‘YES‘ are NOT satisfied.
- ‘N/A‘: The prerequisite is NOT met.

- ‘flag_failure_to_acknowledge_limitations‘:
- Evidence Source: ‘experimental_setup‘, ‘suggested_answer‘.
- Definition: Whether the ‘suggested_answer‘ presents a conclusion without acknowledging critical

limitations or uncertainties evident from the ‘experimental_setup‘.
- Prerequisite: The ‘experimental_setup‘ contains CLEAR limitations or sources of error.
- ‘YES‘: The answer presents its conclusion as robust WITHOUT mentioning the known limitations.
- ‘NO‘: The prerequisite IS met, but the conditions for ‘YES‘ are NOT satisfied.
- ‘N/A‘: The prerequisite is NOT met.

5. Formatting & Mechanical Bugs
- ‘flag_incorrect_answer_reference‘:

- Evidence Source: ‘question‘, ‘suggested_answer‘, ‘ground_truth_answer‘.
- Definition: Whether the provided justification or reasoning identifies the correct answer option(s), BUT

then a different option letter is given as the final answer.
- Prerequisite: The ‘question‘ IS a multiple-choice question (MCQ).
- ‘YES‘: The justification or reasoning provided refers to one option letter while discussing the content of

another.
- ‘NO‘: The prerequisite IS met, but the conditions for ‘YES‘ are NOT satisfied.
- ‘N/A‘: The prerequisite is NOT met.

Output: Provide your evaluation in the specified JSON format, including the single ‘primary_error_category‘
and the choice (‘YES‘, ‘NO‘, or ‘N/A‘) for every ‘flag_‘. Note that for some flags the ONLY possible
choices as ‘YES‘ and ‘NO‘ (NOT ‘N/A‘). For each flag, include a brief but clear justification (1-2 sentences)
explaining your provided judgment.

[USER]
Fields: outcome_prediction_question, pq_format, experimental_setup, measurement_taken, required_

background_knowledge, answer, reasoning_for_answer, clean_gta
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Given the following ‘experimental_setup‘ and ‘measurements_taken‘ and ‘background_knowledge‘ (if any):
- ‘experimental_setup‘:

"""
{experimental_setup}
"""

- ‘measurements_taken‘:
"""
{measurement_taken}
"""

- ‘background_knowledge‘:
"""
{required_background_knowledge}
"""

And for the following ‘question‘ (of type ‘question_type‘) and its ‘ground_truth_answer‘:
- ‘question_type‘: {pq_format}

- ‘question‘ (along with choices if applicable):
"""
{outcome_prediction_question}
"""

- ‘ground_truth_answer‘:
"""
{clean_gta}
"""

Evaluate the following ‘suggested_answer‘ with respect to the provided materials as instructed:
- ‘suggested_answer‘:

"""
{answer}

REASONING: {reasoning_for_answer}
"""

Prompt for generating responses with background knowledge

[SYS]
Fields: domain, field, experimental_setup, measurement_taken, required_background_knowledge

Instructions: You are tasked with predicting the outcome of a scientific experiment in {domain} and the field of
{field} given the provided ‘experimental_setup‘ and ‘measurements_taken‘. You must analyze the user’s
scientific ‘question‘ very carefully, and forecast the results AS ACCURATELY AS POSSIBLE given the
inputs provided. Each question will have a type (multiple-choice, free-form, numerical) that you must
consider when formulating your predictions. Ensure that your predictions are well-reasoned and based on
the data provided.

Inputs :
- ‘domain‘: {domain}
- ‘field‘: {field}
- ‘experimental_setup‘: {experimental_setup}
- ‘measurements_taken‘: {measurement_taken}
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- ‘required_background_knowledge‘: {required_background_knowledge}

Question Types:
- Multiple-Choice: Choose the most likely outcome from the list of provided options.
- Free-Form: Provide a comprehensive but concise explanation of the expected results.
- Numerical: Predict a specific numerical value of the outcome based on the provided data.

Output: Depending on the ‘question_type‘ provided by the user and based on the provided background
knowledge, output the appropriate prediction in the following output fields:

- ‘answer‘
- Multiple-Choice: Write ONLY the letter(s) corresponding to the most likely outcome in the ‘answer‘

field (e.g., "X"). If choosing multiple letters (items) is allowed by the ‘question‘ and desired,
separate them with commas (e.g., "X, Y, Z").

- Free-Form: Provide a comprehensive but concise explanation of the expected results.
- Numerical: Write ONLY the predicted numerical value in the ‘answer‘ field (e.g., "1.234").

- ‘reasoning_for_answer‘: A detailed explanation of how you arrived at your prediction, including any
relevant calculations, assumptions, or scientific principles applied.

- ‘confidence‘: Choose between the levels provided. "Confidence" refers to how certain you are about the
accuracy of your prediction based on the information provided.

- ‘difficulty‘: Choose between the levels provided. "Difficulty" refers to the complexity of accurately
predicting the outcome of the experiment based on the information provided.

- ‘feasibility‘: Choose between the levels provided. "Feasibility" refers to the practicality of predicting the
outcome of the experiment WITHOUT conducting it, based on the information provided.

- ‘reasoning_for_feasibility‘: A detailed explanation of how you arrived at your feasibility assessment,
considering factors such as experimental design, measurement accuracy, and potential sources of error.

Ensure that your predictions are clear, concise, and directly address the user’s scientific ‘question‘.

[USER]
Fields: pq_format, outcome_prediction_question

Answer the following ‘question‘ as accurately as possible:
- ‘question_type‘: {pq_format}
- ‘question‘: {outcome_prediction_question}

Prompt for generating responses without background knowledge

[SYS]
Fields: domain, field, experimental_setup, measurement_taken

Instructions: You are tasked with predicting the outcome of a scientific experiment in {domain} and the field of
{field} given the provided ‘experimental_setup‘ and ‘measurements_taken‘. You must analyze the user’s
scientific ‘question‘ very carefully, and forecast the results AS ACCURATELY AS POSSIBLE given the
inputs provided. Each question will have a type (multiple-choice, free-form, numerical) that you must
consider when formulating your predictions. Ensure that your predictions are well-reasoned and based on
the data provided.

Inputs :
- ‘domain‘: {domain}
- ‘field‘: {field}
- ‘experimental_setup‘: {experimental_setup}
- ‘measurements_taken‘: {measurement_taken}

Question Types:
- Multiple-Choice: Choose the most likely outcome from the list of provided options.
- Free-Form: Provide a comprehensive but concise explanation of the expected results.
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- Numerical: Predict a specific numerical value of the outcome based on the provided data.

Output: Depending on the ‘question_type‘ provided by the user, output the appropriate prediction in the
following output fields:

- ‘answer‘
- Multiple-Choice: Write ONLY the letter(s) corresponding to the most likely outcome in the ‘answer‘

field (e.g., "X"). If choosing multiple letters (items) is allowed by the ‘question‘ and desired,
separate them with commas (e.g., "X, Y, Z").

- Free-Form: Provide a comprehensive but concise explanation of the expected results.
- Numerical: Write ONLY the predicted numerical value in the ‘answer‘ field (e.g., "1.234").

- ‘reasoning_for_answer‘: A detailed explanation of how you arrived at your prediction, including any
relevant calculations, assumptions, or scientific principles applied.

- ‘confidence‘: Choose between the levels provided. "Confidence" refers to how certain you are about the
accuracy of your prediction based on the information provided.

- ‘difficulty‘: Choose between the levels provided. "Difficulty" refers to the complexity of accurately
predicting the outcome of the experiment based on the information provided.

- ‘feasibility‘: Choose between the levels provided. "Feasibility" refers to the practicality of predicting the
outcome of the experiment WITHOUT conducting it, based on the information provided.

- ‘reasoning_for_feasibility‘: A detailed explanation of how you arrived at your feasibility assessment,
considering factors such as experimental design, measurement accuracy, and potential sources of error.

Ensure that your predictions are clear, concise, and directly address the user’s scientific ‘question‘.

[USER]
Fields: pq_format, outcome_prediction_question

Answer the following ‘question‘ as accurately as possible:
- ‘question_type‘: {pq_format}
- ‘question‘: {outcome_prediction_question}

Prompt used for judge

[SYS]
Fields: domain, field, rubric_criteria_lines

Instructions: You are acting as an impartial judge evaluating a suggested answer (‘suggested_answer‘) to a
scientific prediction question in the {domain} domain and the field of {field}. Your goal is to determine
how well the ‘suggested_answer‘ aligns with the ‘ground_truth_answer‘ based on a set of specific ‘rubric_
criteria‘ (a list of >=1 criterion items). Each criterion will need to be evaluated independently. Your
evaluation must be objective, rigorous, and strictly based on the provided information. The ‘question‘ was
asked given the context information of a scientific experiment as defined by the provided ‘experimental_
setup‘ and ‘measurements_taken‘.

Evaluation Requirements:
1. First, carefully read and understand the scientific context (domain, field) and the specific ‘question‘. Use the

provided ‘experimental_setup‘ and ‘measurements_taken‘ to inform your understanding.
2. Compare the ‘suggested_answer‘ with the ‘ground_truth_answer‘ and reason about the overall correctness

and completeness of the ‘suggested_answer‘.
3. For EACH criterion (INDEPENDENTLY) provided in the ‘rubric_criteria‘ list (could be 1 or more criterion

items), you must meticulously assess if the ‘suggested_answer‘ satisfies it ("true" or "false"). The ground
truth answer should be used as the reference as the overall correct answer to the ‘question‘. Provide the
output in the corresponding ‘_satisfied‘ fields.

4. Your judgment must be objective. Do not introduce external knowledge or make assumptions beyond the
provided text.

5. Provide a concise yet clear justification for EACH criterion’s determined satisfaction status ("true"/"false") in
the corresponding‘_reasoning‘ field.

Inputs:
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- ‘domain‘: {domain}
- ‘field‘: {field}
- ‘rubric_criteria‘: Provided below as a list.

Evaluation Criteria:
{rubric_criteria_lines}

Output Format:
You MUST provide your evaluation in a strict JSON format. For each criterion, you will output two fields: one

boolean (‘_satisfied‘) and one string (‘_reasoning‘).

[USER]
Fields: outcome_prediction_question, predicted_answer, clean_gta, experimental_setup, measurement_taken

Given the following ‘experimental_setup‘ and ‘measurements_taken‘:
- ‘experimental_setup‘:

"""
{experimental_setup}
"""

- ‘measurements_taken‘:
"""
{measurement_taken}
"""

Evaluate the following ‘question‘ with respect to the provided ‘suggested_answer‘ and ‘ground_truth_answer‘
as instructed:

- ‘question‘: {outcome_prediction_question}
- ‘suggested_answer‘: {predicted_answer}
- ‘ground_truth_answer‘: {clean_gta}

Prompt to generate responses for questions on background knowledge

[SYS]
Fields: domain, field

Instructions: You are tasked with answering questions about a scientific knowledge/facts in the {domain}
domain and the field of {field}. You will be provided with the experimental setup (‘experimental_setup‘)
and the measurements taken (‘measurement_taken‘) as additional context that are relevant to the
questions. Using this information, you must answer the provided question ACCURATELY and
COMPLETELY.

Output: Provide your accurate and complete answer to each provided question clearly and concisely. Provide
your reasoning for the provided answers in the corresponding output fields.

[USER]
Fields: bkg_to_qa, experimental_setup, measurement_taken

Given the following ‘experimental_setup‘ and ‘measurements_taken‘:
- ‘experimental_setup‘:

"""
{experimental_setup}
"""

- ‘measurements_taken‘:
"""
{measurement_taken}
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"""

Answer each of the following questions (each question has a unique hash identifier):
{bkg_to_qa}

Prompt to generate questions on background knowledge

[SYS]
Fields: domain, field

You are tasked with converting a list of scientific knowledge/fact items in the {domain} domain and the field of
{field} into a set of clear, answerable questions. You will be provided with the description of the
experimental setup and the measurements taken, the purpose of the given scinetific knowledge/fact items
is to help predict the outcome of the experiment. You must create EXACTLY ONE question where the
original knowledge/fact is the complete and direct answer. DO NOT MAKE any direct references to the
experimental setup, and the measurements taken in the questions.

Output the list of questions and the corresponding original facts in the required JSON format.

[USER]
Fields: experimental_setup, measurement_taken, required_background_knowledge_hashed

Given the following ‘experimental_setup‘ and ‘measurements_taken‘:
- ‘experimental_setup‘:

"""
{experimental_setup}
"""

- ‘measurements_taken‘:
"""
{measurement_taken}
"""

List of knowledge/fact items to convert:
{required_background_knowledge_hashed}

Prompt for generating synthetic background knoweldge

[SYS]
Fields: domain, field

Instructions: You are tasked with generating relevant background knowledge required for predicting the
outcome of the provided scientific experiment in the {domain} domain and the field of {field}. Based on
the provided domain, field, experimental setup, and measurements, identify and list 3-6 key scientific
principles, facts, or concepts that are essential for predicting the outcome.

Output: Your output must match the required JSON format. Output ONLY a single background knowledge
item as an element of the output list (multiple items in the list collectively resulting in multiple pieces of
background knowledge). Do NOT output ANY additional comments or text outside in addition to the
actual pieces of background knowledge.

Example Output:
{

"generate_bkg": [
"Background sentence 1.",
"Background sentence 2."
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]
}

[USER]
Fields: domain, field, experimental_setup, measurement_taken

Please generate the background knowledge for the following experimental direction:
- Domain: {domain}
- Field: {field}
- Experimental Setup: {experimental_setup}
- Measurements Taken: {measurement_taken}

Prompt for judging ansers to questions on background knowledge

[SYS]
Fields: domain, field

Instructions: You are acting as an impartial judge evaluating a list of answers (‘answers‘) to questions and if
those answers capture the corresponding ground truth facts (‘ground_truth_facts‘) for that question in the
context of a scientific experiment in the {domain} and the field of {field}. You will also be provided with

the experimental setup (‘experimental_setup‘) and measurements taken (‘measurements_taken‘) as
additional context that are relevant to the questions. Your goal is to determine if each answer is factually
correct and complete (using a coverage metric) based on the provided ground truth facts.

Output: Output your evaluation in the provided JSON format. Each corresponding answer/fact pair is
guaranteed to match with a unique hash identifier. For completeness coverage, output a number strictly in
the range [0, 1] representing the fraction of ground truth facts that are covered by the answer. For
correctness, output "true" if the answer is factually correct with respect to the ground truth facts, and "
false" otherwise. Provide a concise yet clear justification for each judgment in the corresponding ‘reasoning‘
fields.

[USER]
Fields: answer_bkg_qa, experimental_setup, measurement_taken, required_background_knowledge_hashed

Given the following ‘experimental_setup‘ and ‘measurements_taken‘:
- ‘experimental_setup‘:

"""
{experimental_setup}
"""

- ‘measurements_taken‘:
"""
{measurement_taken}
"""

And the following ‘ground_truth_facts‘ (IDs provided in the start of the lines):
{required_background_knowledge_hashed}

Provide your judgments strictly matching the above criteria on the correctness and completeness coverage of
each ANSWER against the ground truth (ANSWERs need to be evaluated NOT the ground truth facts):

{answer_bkg_qa}
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Prompt for converting mcq to ff

[SYS]
Fields: domain, field

Instructions: You are an task with converting multiple-choice questions (MCQ) provided in the {domain}
domain and the field of {field} to a free-form question format. You will be provided with the original
questions, the multiple-choice options, and the correct answer(s) (potentially multiple), as well as the
experimental setup and the measurements taken for the experiment.

Output: Provide the corresponding free-form output question and provide a clear but concise reasoning for the
choice and writing of the question. The question must NOT include ANY part from the final MCQ answer
and must also not be dependent on the experimental setup or measurements as much as possible. The goal
is to have a responder answer the output free-form question, and for a judge to then be able to check
whether the free-form question was answered correctly and completely or not based on the original correct
answer(s) to the original MCQ question. You should also provide an explanation of how a judge would
then be able to verify the correctness AND completeness of an answer to the output free-form question
given ONLY the original MCQ question and correct answer(s) as well as experimental setup and
measurements taken. Questions MUST be clear in scope (not too broad or too narrow), unambiguous,
targeted, and end with a question mark.

[USER]
Fields: outcome_prediction_question, experimental_setup, measurement_taken, clean_gta

Given the following ‘experimental_setup‘ and ‘measurements_taken‘:
- ‘experimental_setup‘:

"""
{experimental_setup}
"""

- ‘measurements_taken‘:
"""
{measurement_taken}
"""

Convert the following multiple-choice question into a free-form question based on the provided instructions.
{outcome_prediction_question}

Correct answer(s) for this question (NOT to be included in the output free-form question):
{clean_gta}

Provide your output in the specified JSON format, including the new free-form question, your reasoning for
constructed it that way, and the explanation for how a judge would verify the correctness and
completeness of an answer to the free-form question.
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