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Abstract
Deep Research (DR) is an emerging agent application that leverages large language models (LLMs) to address open-
ended queries. It requires the integration of several capabilities, including multi-step reasoning, cross-document
synthesis, and the generation of evidence-backed, long-form answers. Evaluating DR remains challenging because
responses are lengthy and diverse, admit many valid solutions, and often depend on dynamic information sources.
We introduce RESEARCHRUBRICS, a standardized benchmark for DR built with over 2,800+ hours of human labor
that pairs realistic, domain-diverse prompts with 2,500+ expert-written, fine-grained rubrics to assess factual
grounding, reasoning soundness, and clarity. We also propose a new complexity framework for categorizing DR
tasks along three axes: conceptual breadth, logical nesting, and exploration. In addition, we develop human and
model-based evaluation protocols that measure rubric adherence for DR agents. We evaluate several state-of-the-art
DR systems and find that even leading agents like Gemini’s DR and OpenAI’s DR achieve under 68% average
compliance with our rubrics, primarily due to missed implicit context and inadequate reasoning about retrieved
information. Our results highlight the need for robust, scalable assessment of deep research capabilities, to which
end we release RESEARCHRUBRICS (including all prompts, rubrics, and evaluation code) to facilitate progress
toward well-justified research assistants.

1. Introduction

An exciting development in the growing capabilities of large language models (LLMs) is the emergence of Deep
Research agents: autonomous LLM-based systems that conduct multi-step web exploration, targeted retrieval, and
synthesis to answer open-ended queries. Industry leaders have begun deploying such systems (e.g., OpenAI’s
“Deep Research” [18] and Google’s “Gemini Deep Research” [9]), which have demonstrated strong performance on
certain benchmarks (for instance, scoring 26.6% on the expert-level HLE benchmark Phan et al. [21]). However,
evaluating deep research agents poses significant challenges. Deep Research (DR) tasks are inherently open-ended:
they require reasoning across multiple documents, often with no single “correct” answer, and their outputs can
be long and varied. Consequently, existing evaluation methods fall short. Typical QA benchmarks, both general
[14, 17, 21, 29] and deep research specific [5, 13], focus on short, easily-verifiable factual answers and do not capture
the long-form, multi-source synthesis required by DR, e.g., “Which material has band gap 0.9 eV, dislocation density
4 × 108cm−2?” with the unique answer “Gallium nitride (GaN)”. Such benchmarks do not capture the long-form,
multi-source synthesis required by DR.

Several recent efforts to benchmark deep research agents directly have also revealed important limitations: for
example, some benchmarks introduce LLM-generated rubrics and evaluation metrics reliant upon LLM-generated
reference reports [8], thus raising concerns about circularity and limited oversight [7], while others are far more
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Figure 1: Overview of RESEARCHRUBRICS and its evaluation pipeline.

narrow in their scope, assessing only one specific angle of research in a technical domain (e.g., generating a
“Related Works” section) [15, 20, 24]. In practice, however, users direct deep research systems toward a broad
array of everyday topics, ranging from business reports to consumer-related queries, underscoring the need for
benchmarks that combine domain diversity with expert-authored, fine-grained rubrics.

To better characterize these challenges and motivate our approach, we introduce a task complexity framework for
deep research. Each query can be described along three independent axes: (1) its conceptual breadth (the number
and diversity of distinct topics or domains involved), (2) its logical nesting depth (the number of reasoning or
decision steps required, including sub-questions and conditionals), and (3) its exploration level (the degree of
open-endedness or underspecification of goals). This tri-axial view highlights how DR queries differ from simpler
QA tasks and helps articulate the shortcomings of existing methods: simple QA benchmarks lack sufficient breadth,
depth, and exploration, while many current DR benchmarks fail to cover this full, multi-axial complexity.

We introduce RESEARCHRUBRICS, which pairs realistic, diverse prompts with expert-authored, fine-grained
rubrics for deep research. We curate queries from nine broad domains (including business planning, historical
analysis, technical documentation, and common consumer questions) to reflect real-world use cases. Each prompt
comes with a detailed rubric: in total, we provide 2,593 rubric criteria that check factual grounding, coherence
of reasoning, completeness, relevance, and clarity of the answer. The benchmarks also include negative rubrics
that specifically aim to penalize extraneous or incorrect content. Importantly, all rubrics are written and reviewed
by human experts (not auto-generated), ensuring they capture nuanced, domain-specific requirements. We also
develop evaluation protocols for both human and automated scoring. Following the LLM-as-judge paradigm, we
use powerful LLMs to assess rubric compliance, and we systematically experiment with improving this process
comparing binary vs. ternary grading for each criterion and the level of detail in the rubrics. Finally, we apply
our framework to leading DR systems (OpenAI’s DeepResearch [18], Google Gemini’s Deep Research [9], and
Perplexity’s Deep Research [1]). The results show that even the strongest agents fall below 68% average rubric
compliance, revealing substantial room for improvement in multi-document synthesis and rigorous justification.

Our contributions are as follows:

• A human-crafted benchmark for deep research. We present RESEARCHRUBRICS, a suite of open-ended research
tasks across diverse domains, each with an expert-written rubric (2,593 total criteria). Crucially, each rubric is
both written and reviewed by humans, thereby mitigating potential anchoring biases that may arise when only
verifying LLM-generated rubrics.

• A task complexity framework. We formalize deep research queries along three axes—breadth, depth, and ambi-
guity—to distinguish them from conventional QA tasks and to guide the construction of balanced benchmarks
that reflect real-world deep research queries.

• Rubric-based, open-ended evaluation. We introduce outcome-based, fine-grained rubrics that provide rigorous
evaluation of long-form research answers and closely align with expert judgments. We also separate mandatory
(required for sufficiency) from optional criteria, addressing a key gap in existing benchmarks.

• Ternary Grading. We propose a ternary grading scheme for a rubrics-based benchmark that supports partial
credit assignment, and examine its suitability for automated evaluation.
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Table 1: Comparison of RESEARCHRUBRICS with representative Deep Research benchmarks.

Benchmark Human-authored
Rubrics Expert-Curated Open-Ended Tasks Non-Technical

Domains LLM-as-Judge
Average

# Rubrics
per task

AcademicBrowse [30] ✗ ✗ ✗ ✓ ✗ –
BrowseComp [26] ✗ ✗ ✗ ✓ ✗ –
ResearchBench [16] ✗ ✗ ✗ ✓ ✗ –
ResearcherBench [28] ✓ ✓ ✓ ✗ ✓ 14
DeepScholar-Bench [20] ✗ ✗ ✓ ✗ ✓ –
ReportBench [15] ✗ ✗ ✗ ✓ ✓ –
DeepResearch Bench [8] ✗ ✓ ✓ ✗ ✓ 25
Mind2Web2 [11] ✗ ✓ ✗ ✓ ✓ 50
LiveResearchBench [25] ✗ ✓ ✓ ✓ ✓ –
LiveDRBench [13] ✗ ✗ ✗ ✓ ✓ –
ExpertLongBench [22] ✓ ✓ ✓ ✓ ✓ 16
DeepResearch Arena [24] ✗ ✗ ✓ ✓ ✓ –
DeepResearchGym [5] ✗ ✗ ✓ ✓ ✓ –
SPOT [23] ✓ ✗ ✗ ✗ ✓ –

RESEARCHRUBRICS (Ours) ✓ ✓ ✓ ✓ ✓ 26

• Rubric design impact on LLM-as-a-judge. We introduce practical recommendations for rubric design that
improve agreement with human evaluators and are validated through ablation studies.

By releasing RESEARCHRUBRICS, we aim to catalyze progress toward trustworthy, well-justified DR assistants for
complex, open-ended research tasks in a multitude of domains.

2. Related Work

Early benchmarks have largely taken two approaches: deriving or constructing tasks from static corpora or relying
on expert-curated questions.

Derived Benchmarks AcademicBrowse [30] and BrowseComp [26] assess retrieval from academic papers or
the web, while ResearchBench [16] builds complex queries from static data. More recent work goes further and
derives tasks from dynamic, real-world scenarios. DeepScholar-Bench [20] evaluates systems on related work
writing using live queries from arXiv papers, though it is specialized to academic synthesis and uses automated
metrics. ReportBench [15] leverages published surveys as ground truth, measuring overlap with expert-written
reviews but prioritizing replication. DeepResearch Arena [24] automatically curates 10,000 open-ended tasks from
academic seminars, pairing them with adaptively generated rubrics, though automatic rubric generation can miss
domain nuances.

Expert Curated Benchmarks Expert-authored benchmarks include Humanity’s Last Exam (HLE) [21], which pro-
vides expert-written short-answer questions across advanced domains, but does not target more ambiguous/open-
ended analysis directly, and DeepResearch Bench [8], which introduces 100 PhD-level problems requiring long-form
reports, but struggles with critical weaknesses including LLM-generated rubrics for specialized domains, evalua-
tion metrics reliant on LLM-generated reference reports, and simplistic reference overlap metrics. Newer works
such as Mind2Web2 [11] and ResearcherBench [28] extend this approach, but in an effort to ease evaluation, either
target narrowly defined domains (e.g., only AI-related topics) or restrict the scope of the prompt so that the
Agent-as-a-Judge framework can operate effectively with LLM-generated rubrics. LiveResearchBench [25] tries to
focus on more realistic prompts but still relies on LLM-generated rubrics that are only human-reviewed, which
may introduce an anchoring bias. Our rubrics, by comparison, are fully human-written and reviewed from the
outset. ExpertLongBench [22] is similar to our benchmark in that it targets expert-level, long-form tasks across nine
domains with domain-specific rubrics. However, it relies on high-quality existing references for evaluation using
the CLEAR framework, which limits the scope of prompts to highly academic or professional queries (e.g., Clinical
Note Generation, Legal Multi-Document Case Summarization, Molecule Description Generation), whereas we also
include general consumer research queries. Additionally, our benchmark has a much higher average number of
rubrics per task than many of these benchmarks, resulting in superior evaluation granularity.
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is socail media good or bad for us? just tell me 
if its more benificial or detrimentle to 
everyone. use some examples. 

Initial Prompt 

Expert 1 

1) Did it talk about different stuff like 
politics?  +1 

2) Did it mention government rules 
for the internet?  +3 

3) It just says things are bad for 
people's feelings without any proof.  -5 

Initial Rubrics 

Expert 1 and Expert 2 iterate until Expert 2 accepts the prompt and rubrics 
from the Expert 1 

Discuss the societal impact of social media. Look 
at some of the pros and cons it has in different 
areas, like mental health and politics. Based on 
this, has its effect been mostly positive or mostly 
negative? 

1) The response identifies a few key 
areas where social media has an 
impact. 

+5 

2) The response brings up at least one 
law or government action concerning 
social media. 

+3 

3) The response brings up at least one 
law or government action concerning 
social media. 

-4 

Expert 2 

Revised Prompt 

Revised Rubrics 
Conduct an analysis to determine whether social 
media's overall impact on society has been more 
beneficial or detrimental. 
 
Argument should be structured by examining 
social media's impact across key domains of 
society. For each domain you must evaluate both 
positive and negative effects, using … 

3) The response contains blanket 
statements especially regarding mental 
health impacts (e.g., body dysmorphia, 
increased anxiety, emotional distress 
triggers, disruption of sleep patterns) 
without citations. 

1) The response identifies at least 5 
societal domains (e.g., mental health, 
relationships, politics/civic 
engagement, the information 
ecosystem, the economy). 

+5 

2) Response highlights policy or 
regulatory responses to social media's 
effects in at least one domain (e.g., 
Section 230 of the CDA, COPPA, the 
SAFE act, New York's Child Data 
Protection Act). 

+3 

-4 

Expert 3 

Final Prompt 

Final Rubrics 

Expert 3 makes final adjustments 

Figure 2: The three-stage pipeline for creating and refining prompts and rubrics. An initial draft by Expert 1 is
iteratively improved with Expert 2 before a final review and adjustment by Expert 3.

To summarize, existing benchmarks thus face two primary limitations: a reliance on static datasets or answer
keys [15, 16], and the use of non-expert or automated evaluation, including coarse metrics [20] or auto-generated
rubrics [8, 11, 24]. In contrast to these approaches, RESEARCHRUBRICS offers a middle ground: realistic research
queries (academic and everyday domains) paired with expert-written rubrics assessing grounding, synthesis,
reasoning, clarity, and citation usage. By using human-written rubrics with LLM judges, we avoid simplistic
overlap measures while maintaining scalability. RESEARCHRUBRICS complements efforts like ExpertLongBench,
while emphasizing domain diversity, rubric quality, and a focus on deep-research specific tasks.

3. Overview of RESEARCHRUBRICS

RESEARCHRUBRICS consists of 101 single-turn prompts, each paired with a set of 20–43 prompt-specific rubric
criteria. Every prompt and criterion in RESEARCHRUBRICS was written and iteratively refined by human experts
to ensure clarity and relevance (no criteria were seeded or generated by LLMs). The prompts cover a wide range of
topics and inquiry types to emulate real user questions that deep research agents receive. In total, the benchmark
contains 2,593 unique rubric items, enabling a fine-grained assessment of open-ended, realistic research queries.
Figs. 1 and 2 provide an overview of our benchmark design and evaluation process.

3.1 Data Collection and Task Domains

AI & ML
16.8%

Historical Analysis

12.9%Business Planning & Research

11.9%

Technical Documentation 11.9%

General Consumer Research
10.9%

Hypotheticals & Philosophy

10.9%

STEM

7.9% Creative Writing

5.9%
Other

5.9%

Current Events5.0%

Figure 3: Distribution of task domains in our collected
data. The dataset has an even spread across task do-
mains.

Our data collection pipeline consists of three expert par-
ticipants, as shown in Fig. 2. In this context, we define an
“expert” as an individual with a strong STEM background
who is skilled in task design and evaluation, rather than
a domain-specific specialist for each prompt. All partic-
ipants in our data collection only chose and worked on
domains they were familiar with.

The pipeline involves three experts, each assigned to a
distinct and separate role. Expert 1 initially proposes a
prompt and a set of rubric criteria. This proposal is then
passed to Expert 2 for review. Expert 2 provides feedback
and iterates with Expert 1 until the pair is approved. Fi-
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nally, Expert 3 conducts a final, independent review and makes any last adjustments. This three-participant setup
ensures that each component is thoroughly reviewed multiple times, guaranteeing high quality in the final data.

To ensure realism and variety, initial prompt ideas were drawn from user forums, Q&A sites, and brainstorming
sessions, then adapted to represent the range of research-like questions a deep reasoning agent might encounter.
The result is a collection of prompts that span both breadth (a wide variety of domains) and depth (challenging
multi-step problems).

For each finalized prompt, experts developed a detailed rubric specifying what an ideal response should include
and which common errors to avoid, following the pipeline detailed in Fig. 2. We weighted each criterion based on
its importance (see Section 3.3) and included negative criteria targeting likely pitfalls, such as factually incorrect
statements, off-topic tangents, or disallowed content.

We curated prompts from nine broad categories (see Table 10 in the Appendix for a detailed description of each
category) to maximize diversity. These range from technical documentation to historical analysis, creative writing,
and current events.

Fig. 3 shows the distribution of categories in RESEARCHRUBRICS. The distribution is fairly even, with AI/ML and
historical analysis queries constituting the largest portions closely, followed by domains like general consumer
research, reflecting both specialized academic topics and everyday research questions. Other categories provide
targeted challenges (e.g., creative synthesis or real-time news retrieval). This diversity ensures that a DR agent
must draw on a wide range of knowledge sources and adapt to different task structures.

3.2 Prompt Complexity Dimensions

Not all research prompts are equal—some involve a broader knowledge base, others require deeper reasoning, and
others are underspecified and exploratory. We categorize each RESEARCHRUBRICS task along three orthogonal
complexity dimensions: Conceptual Breadth, Logical Nesting Depth, and Exploration (Table 2). This framework
helps ensure our benchmark covers a balanced mix of task types and allows analysis of where agents struggle
most.

Table 2: Prompt complexity categories used to annotate each task in RESEARCHRUBRICS.

Complexity
Axis

Level Definition Example

Conceptual
Breadth

Simple Involves a single domain or topic; solvable using 1 primary information source or conceptual
framework.

A math word problem or a factual lookup from one source.

Moderate Integrates 2–5 distinct subtopics or data sources that are weakly coupled; limited cross-domain
reasoning.

A prompt combining two fields (e.g., a physics concept applied in a medical device context).

High Requires synthesis across > 5 information sources or clearly disjoint domains (e.g., science,
economics); reasoning depends on multiple perspectives.

“Analyze the environmental, economic, and political factors affecting renewable energy
adoption in Asia.”

Logical
Nesting

Shallow Single-step inference or direct retrieval; answer derived from one reasoning operation or query. “What is the capital of X country?” or a single lookup query.

Intermediate Multi-step reasoning (2 to 3 dependent sub-questions) where later steps depend on earlier
intermediate results.

“Find the sales of Company A and Company B last year and determine who grew faster; then
identify one reason for that difference.”

Deep Requires 4+ dependent reasoning steps or hierarchical planning (e.g., analysis → synthesis →
evaluation → revision).

“Develop an evidence-backed investment strategy given current economic indicators,
stress-test it against at least two historical scenarios and suggest contingency plans.”

Exploration Low Fully specified and unambiguous; prompt contains explicit goals, constraints, and evaluation
criteria.

“Summarize the methodology of the referenced paper.” The task is clear-cut.

Medium Moderately open-ended (1–2 unspecified factors); requires limited prioritization among known
aspects.

“Discuss the benefits and risks of AI in healthcare.” Covers standard themes (privacy,
accuracy, etc.).

High Underspecified or exploratory; 3+ key factors unspecified, requiring clarification of objectives or
creative reframing.

“I want to change careers to something with strong future growth—what should I consider?”
The agent must clarify the criteria and explore multiple paths.

Every task in RESEARCHRUBRICS is annotated with a triplet of (Breadth, Depth, Ambiguity) labels. In our
evaluations, we analyze model performance across these dimensions to see, for example, if a model struggles more
with breadth (integrating many sources) or with depth (long reasoning chains). This also helps researchers filter
the benchmark for specific experiment focuses (e.g., testing only high-depth reasoning tasks).

3.3 Rubric Design

RESEARCHRUBRICS is a rubric-based benchmark: each prompt is judged against a tailored set of criteria that define
the requirements of a good answer. RESEARCHRUBRICS also separates mandatory (required for sufficiency) from
optional criteria, addressing a key gap in existing benchmarks.
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Figure 4: Overview of task complexity dimensions and rubric criteria category distributions in RESEARCHRUBRICS.

Table 3: Rubric criteria used to evaluate responses, with illustrative examples for each category.

Criterion Description Example

Explicit
Requirements

Checks whether the answer addresses all points explicitly asked in the
prompt and does so correctly.

Prompt: “Compare X and Y and recommend one.” → The
answer compares X vs. Y on relevant traits and makes a clear
recommendation.

Implicit
Requirements

Covers points that a well-informed person would expect, even if not
directly asked. Encourages completeness and contextual understanding.

Prompt: “Explain a medical treatment.” → A good answer
also mentions side effects or costs, even if not requested.

Synthesis of
Information

Evaluates whether the model connects and synthesizes information
across multiple sources or sub-parts of the query, rather than merely
listing facts.

Prompt: “Summarize several studies on renewable energy
adoption.” → The answer identifies overarching trends and
draws integrated conclusions.

Use of References Assesses inclusion and appropriateness of citations or evidence where
expected. Checks if references are specific, relevant, and actually support
claims.

Prompt: “Summarize recent findings on large language
models.” → The answer cites key papers (e.g., “Attention is
All You Need”) and links claims to sources.

Communication
Quality

Evaluates clarity, organization, and tone. A response may be factually
correct but still poor if disorganized or misaligned with the audience’s
needs.

Prompt: “Write a short blog post for a general audience.” →
The answer is logically structured, concise, and avoids
excessive jargon.

Instruction
Following

Checks adherence to explicit user instructions or constraints (e.g.,
required format, tone, exclusions).

Prompt: “Summarize this without mentioning Topic Z.” →
The answer omits Topic Z as instructed.

Table 3 presents the six broad evaluation axes used to assess response quality. Each axis contains multiple rubric
criteria, which are categorized as either mandatory or optional.

• Mandatory criteria define the minimum requirements for a valid response, i.e., core elements that must be
satisfied for the answer to be considered correct or adequate.

• Optional criteria capture desirable but non-essential qualities (“nice-to-have” behaviors) that distinguish strong
responses from merely sufficient ones.

Each criterion is assigned a numerical weight in the range [−5, 5], reflecting its relative importance. Weights of
±4 or ±5 correspond to mandatory criteria, while criteria with weights in [−3, 3] are optional. Positive weights
reward the presence of valuable attributes, while negative weights penalize common failure modes such as factual
inaccuracies, irrelevance, or verbosity. These weights are aligned with a calibrated human preference scale
(Table 4) spanning six levels, from Critically Detrimental to Critically Important. This mapping encourages more
consistent human–model agreement during grading.

6



Table 4: Rubric scoring scale with mandatory and optional criteria.

Score Range Description

[+4,+5] Critically important – A criterion without which the response is fundamentally flawed or incorrect. Required for a
minimally viable response.

[−5,−4] Critically detrimental – A criterion identifying an error so severe that it makes the response actively harmful, deeply
unethical, or completely invalidates its reasoning.

[+2 + 3] Important – A key feature of a strong response, but not absolutely essential.
+1 Slightly Important – A “nice-to-have” detail that improves a good response but does not significantly change overall

quality.
−1 Slightly Detrimental – A minor issue, tangent, or stylistic weakness that does not impact core reasoning or validity.

[−3,−2] Detrimental – A significant error that detracts from the response quality, introduces faulty logic, or offers poor advice, but
does not make it fundamentally harmful.

3.4 Evaluation Methodology

Each model response is evaluated against all the rubric criteria using a model as a grader, in an LLM-as-a-
judge setup. The model-based grader outputs ternary judgment verdicts for each rubric, which are {Satisfied,
Partially Satisfied, Not Satisfied}. This scoring process is the same for negative criteria, which are phrased
so that the negative weights are applied to the sum if the negative criteria are met. The final task score is the
weighted sum of all positive and negative weights, normalized by sum of the positive weights (the maximum
possible score the model can achieve).

Sk =
∑ri∈C wri mri

∑ri∈C, wri>0 wri

, mri = Judge(Pk, Res, ri) =


1, if ri is satisfied,
0.5, if ri is partially satisfied,
0, if ri is not satisfied,

(1)

where Sk is the final task score for the task k with prompt Pk and model response Res. C is the set of all criteria,
wri is the (possibly negative) weight assigned to criterion ri„ and mri is the ternary indicator returned from the
model-based judge, Judge(·, ·, ·), representing the level of satisfaction for criterion ri.

To calculate the breakdown of failures per rubric category in an average task, we employ the following formula
(where a failure is only when a rubric receives a Not Satisfied verdict).

Fc =
1

|Tc| ∑
t∈Tc

fc,t =
1

|Tc| ∑
t∈Tc

nfail, c,t

nfail, t
(2)

where nfail, c,t is the number of failed rubrics from category c in task t, nfail, t is the total number of failed rubrics
across all categories in task t, fc,t is the failure rate of category c within task t, Tc is the set of tasks in which category
c occurs at least once, and Fc is the average failure rate of category c across tasks.

This allows us to understand that when rubrics fail, which categories are responsible for the highest contribution
of failures in an average task (as opposed to just how often rubrics from a certain category fail). An important
feature to note is that since the failure rate breakdown is averaged across only those tasks in which those rubric
categories occur (to minimize the effect of an imbalanced rubric category distribution), the failure rate ratios do not
necessarily add up to 1.

Human Consistency Analysis Similar to HealthBench [3], we utilize the Macro F1 score to validate the effective-
ness of using a model-based grader as a proxy for human judgment. In our setup, we compare the ground truth
judgement of experts and model-based graders for each task, and compute the F1 scores for each of the classes
{Satisfied, Partially Satisfied, Not Satisfied}.

F1 = 2 · precision · recall
precision + recall

, where precision =
TP

TP + FP
and recall =

TP
TP + FN

. (3)

where TP, FP, and FN are the True Positive, False Positive, and False Negative values, respectively. We also run
ablation studies to isolate the most significant factors in the level of alignment between the model-based grader
and human judgments. For more details, see Section 4.4.
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4. Experimental Results and Analysis

We evaluate three commercial Deep Research (DR) agents on RESEARCHRUBRICS to measure their capabilities
across multi-step synthesis, implicit reasoning, and evidence-backed justification. Our benchmark introduces
2,500+ expert-written rubric criteria across 100+ prompts, providing a more granular evaluation than existing
frameworks. This granularity enables atomic-level quality assessment that allows us to identify specific failure
modes invisible to coarse-grained metrics.

4.1 Experimental Setup

Evaluated Systems We benchmark OpenAI Deep Research [18], Gemini Deep Research [9], and Perplexity
Deep Research [1]. Each system produces structured PDF reports that we convert to markdown for evalua-
tion across six dimensions: Explicit Requirements, Implicit Reasoning, Synthesis of Information, References,
Communication Quality, and Instruction Following. Our evaluation employs both binary (met/not-met) and
ternary (fully/partially/not satisfied) grading schemes to understand the impact of partial credit on system
rankings.

LLM-as-Judge Implementation We deploy three state-of-the-art LLMs as automated judges: GPT-5 [19], Claude-
Sonnet-4.5 [2], and Gemini-2.5-Pro [6]. Under binary grading, we collapse Partially Satisfied verdicts to Not
Satisfied, measuring strict compliance. Human–model alignment is quantified using Macro F1 scores, with nine
expert annotators providing ground truth across 303 responses.

4.2 Main Results

Table 5: Overall Compliance Scores

Model Ternary Binary

Gemini DR 0.677 0.615
OpenAI DR 0.664 0.597
Perplexity DR 0.566 0.487

Compliance Scores Table 5 reveals that no current system exceeds
70% rubric compliance, with the best-performing Gemini DR achieving
only 67.7% under ternary grading and 61.5% under binary evaluation.
This aligns with findings from LiveResearchBench, where leading sys-
tems score below 74% on comprehensive metrics, DeepResearch Bench,
where leading systems score below 50% on comprehensive metrics.
The consistency across benchmarks suggests fundamental architectural
limitations rather than benchmark-specific challenges.

Failure Rates Fig. 5 decomposes failure rates across evaluation dimensions, revealing that implicit reasoning
and synthesis jointly account for 45-50% of all failures. This corroborates the findings in Multi-Agent System
Taxonomy (MAST) [4], identifying reasoning-action mismatch (13.98%) and disobedience of task specifications
(10.98%) as systemic issues. While agents excel at explicit factual retrieval and communication quality (failure
rates below 20%), they consistently fail to infer unstated requirements or integrate multi-document evidence into
coherent arguments.

Mandatory vs. Optional Criteria RESEARCHRUBRICS separates mandatory and optional criteria, and using
this differentiation, we observe (from Fig. 8) that, while mandatory criteria drive failures in explicit requirements
and synthesis of information, optional criteria account for most implicit reasoning failures. This suggests current
systems meet basic implicit requirements but miss nuanced quality indicators that distinguish professional from
adequate research.

This finding contextualizes HealthBench’s worst-at-16 analysis showing 33% performance degradation from
average to minimum—systems achieve moderate average scores by satisfying mandatory criteria while systemati-
cally missing optional quality dimensions. The mandatory/optional distinction proves essential for deployment
decisions: a 60% overall score might indicate either dangerous gaps in core requirements or merely missing polish
on otherwise solid foundations.

Performance Stratified by Complexity Dimension Fig. 6 presents model compliance scores stratified by con-
ceptual breadth, logical nesting, and exploration level under binary and ternary grading schemes, respectively.
Gemini DR consistently leads, achieving roughly 70% average rubric compliance across most complexity tiers,
followed closely by ChatGPT DR, and Perplexity DR lagging slightly behind. A clear pattern emerges: performance
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Figure 5: Rubric-axis failure rates across Deep Research agents. Dark bars represent ternary grading; light
bars show binary grading. Implicit reasoning and synthesis show markedly higher failure rates compared to
communication quality and references. The pattern holds across all three systems, indicating architectural rather
than implementation limitations.

degrades monotonically with increased logical nesting depth. Whereas shallow reasoning tasks (single-hop or
two-step queries) are handled well, multi-step analytical or evaluative problems see sharp drops, particularly for
models relying on retrieval-centric architectures. Conceptual breadth also correlates with difficulty, though less
steeply; systems handle multi-domain synthesis better than extended inferential chaining.
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Figure 6: Performance across Conceptual Breadth, Logical Nesting, and Exploration (Ternary Evaluation)

Effect of Response Length on Compliance To understand whether output verbosity correlates with perceived
quality, we examine the relationship between response length (in tokens and words) and overall rubric compliance.
Fig. 7 displays these correlations for Gemini DR, ChatGPT DR, and Perplexity DR. Moderate positive correlations
(r ≈ 0.24− 0.28 for Gemini and ChatGPT) indicate that longer responses generally achieve higher scores. Perplexity
DR, with the shortest outputs, achieves the lowest correlations. This supports the length-quality conflation
hypothesis: longer reports often perform better because they cover more rubric criteria, not necessarily because
evaluators prefer verbosity. Nonetheless, since RESEARCHRUBRICS scores are criterion-based rather than holistic,
the observed correlation partly reflects genuine informational density rather than stylistic inflation.
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Figure 7: Comparison of length vs. score across token count for the ternary setting.

Citation Analysis The implicit reasoning gap explains the breadth-accuracy trade-off documented in citation
analysis: Gemini DR produces 111 citations with 81% accuracy while Perplexity achieves 90% accuracy with only
31 citations. Systems optimized for comprehensive coverage sacrifice precision, while those targeting accuracy
miss crucial perspectives—neither strategy successfully handles the implicit judgment of source relevance and
authority.
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Figure 8: Failure rate stratification by criterion importance. Mandatory criteria show systematically higher failure
rates across most dimensions, with the notable exception of implicit reasoning, where optional criteria failures
dominate. This inversion suggests implicit requirements primarily distinguish excellent from merely sufficient
responses. Dark bars represent ternary grading; light bars show binary grading.

4.3 Human-LLM Judge Alignment for Auto-Evaluation

Our human evaluation study (Table 6) demonstrates that binary grading achieves substantial agreement (0.72–0.76
Macro F1), approaching the best-performing LLM-judges for rubrics benchmarks in recent literature. The shift
from ternary to binary evaluation increases agreement by approximately 20 percentage points, confirming that
partial credit introduces ambiguity without improving discriminative power.

The consistency levels validate automated evaluation feasibility for RESEARCHRUBRICS’s 2,593 criteria, exceeding
HealthBench’s 0.709 Macro F1 score. Gemini-2.5-Pro emerges as the most reliable judge, achieving 0.76 agreement
on binary grading, though at least the 12-17 percentage point gap to best human agreement indicates remaining
room for improvement.
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Table 6: Human consistency with LLM judges. Macro F1 scores between human annotators and automated
evaluation across grading schemes and judge models.

Agent Judge Model Agreement

GPT-5 Claude-4.5 Gemini-2.5-Pro

Binary
Perplexity DR 0.717 0.718 0.724
Gemini DR 0.732 0.741 0.760
OpenAI DR 0.719 0.742 0.721

Ternary
Perplexity DR 0.538 0.528 0.559
Gemini DR 0.553 0.532 0.567
OpenAI DR 0.546 0.527 0.557

4.4 Rubric Design Impact

To better understand how rubric design impacts evaluation reliability, we conducted a series of ablation studies
focusing on two key factors: (1) the inclusion of concrete examples within rubric criteria, and (2) the use of
LLM-based augmentation to automatically rephrase those criteria. The goal of these experiments was to measure
how such modifications affect alignment between automated (LLM-as-judge) and human evaluations. We present
the results of the ablation study in Table 7.

We began with the original, expert-authored rubrics as our control condition. Example Detail tests whether
providing brief, inline examples for each criterion improves agreement between human and model judges (in the
format "(e.g., example1, example2, example3)"). The “Low” condition uses minimal guidance (the baseline criteria
only), whereas “High” includes short, task-relevant examples (e.g., a cited study, policy name, relevant item). LLM
Augmentation evaluates whether prompting a large language model to automatically expand or rephrase rubric
text adds clarity. In the “Absent” setting, rubrics are the original human-written ones; in the “Present” setting,
each rubric was rewritten by an LLM with added qualifiers and examples.

We find, in Table 7, that including concrete examples within rubric criteria improves alignment by 3-4% (binary)
and 2-3% (ternary). However, LLM-based rubric augmentation, i.e., automatically expanding criteria with synthetic
elaboration, catastrophically degrades alignment by 15-20%.

Table 7: Impact of rubric design on evaluation reliability. Adding examples improves human-LLM alignment
while automated augmentation degrades it.

Agent Example Detail LLM Augmentation

Low High Absent Present

Binary
Perplexity DR 0.696 0.724 0.724 0.508
Gemini DR 0.733 0.760 0.760 0.564
OpenAI DR 0.709 0.721 0.721 0.528

Ternary
Perplexity DR 0.523 0.559 0.559 0.371
Gemini DR 0.539 0.567 0.567 0.417
OpenAI DR 0.532 0.557 0.557 0.387

This finding challenges assumptions about verbosity improving clarity. Human-authored concise rubrics with
targeted examples outperform machine-generated verbose descriptions, likely because augmentation introduces
semantic drift and emphasis distortion. The implication for RESEARCHRUBRICS’ 2,593 criteria is clear: expert
curation cannot be replaced by automated expansion, and clarity emerges from precision rather than elaboration.

4.5 Discussion: Systematic Patterns and Their Implications

We next present some of our key findings from our analysis.
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Domain and Task Complexity Effects Our analysis reveals surprising performance inversions across domains.
Agents achieve 76% coverage on open-ended consulting questions but struggle with technical precision tasks,
contradicting intuitive difficulty expectations. This aligns with ResearcherBench findings that systems excel at
exploratory reasoning while failing on deterministic requirements. The pattern suggests current architectures
inherently favor creative synthesis over systematic execution, explaining why even leading systems achieve below
40% on technical nugget coverage despite 85% scores on organizational structure.

Task complexity analysis confirms the depth-width decomposition framework: performance degradation accel-
erates with sequential reasoning requirements (depth) more than parallel capability demands (width). Tasks
exceeding 4 sequential inference steps or 35 minutes of human-equivalent time show universal performance
collapse across all evaluated systems. With RESEARCHRUBRICS averaging 25.7 criteria per prompt, approaching
the 2n − 1 component complexity for n = 5 features, we operate near the theoretical saturation point for reliable
evaluation.

The Length-Quality Conflation Problem Deep Research agents produce outputs 10-100 times longer than
standard LLM responses (5,000-50,000+ tokens), raising questions about whether length drives perceived quality.
Our criterion-level analysis reveals a nuanced relationship: longer responses correlate with higher scores, but this
primarily reflects legitimate information density rather than padding. Systems generating comprehensive reports
with 100+ source synthesis necessarily require length, yet evaluators show documented bias toward verbosity
independent of content quality.

RESEARCHRUBRICS’ atomic evaluation partially mitigates this bias. Each of 2500+ criteria checks specific content
presence rather than holistic impressions. However, the correlation persists even at the criterion level, suggesting
that either (1) comprehensive responses naturally satisfy more criteria, or (2) length bias operates even on
supposedly objective checkpoints. Distinguishing these explanations requires controlled experiments varying
response length while holding information content constant.

Architectural Limitations Beyond Prompt Engineering The consistency of failure patterns across systems—45-
50% implicit criteria failures, poor multi-hop reasoning, synthesis bottlenecks—indicates fundamental architectural
constraints rather than implementation differences. Multi-hop reasoning studies demonstrate that while agents
achieve 80%+ success on first-hop inference, bridge entity resolution in early neural layers creates hard limits on
subsequent reasoning depth. This explains why interventions yield only 14% improvements despite extensive
prompt engineering.

The breadth-accuracy trade-off further illustrates these constraints. No system successfully balances comprehensive
coverage with precision. Gemini’s 111-citation breadth sacrifices accuracy (81%) while Perplexity’s 90% accuracy
comes from restrictive 31-citation coverage. This isn’t a tuning problem but reflects incompatible optimization
objectives that current architectures cannot simultaneously satisfy.

5. Conclusion and Future Work

We introduced RESEARCHRUBRICS, a new benchmark and evaluation framework for deep research agents that
emphasizes fine-grained, human-aligned assessment. Through 101 diverse research challenges and expert-written
rubric criteria, our benchmark provides a multi-dimensional lens on an agent’s performance—checking not
just factual recall, but the completeness, reasoning soundness, source usage, and clarity of its responses. RE-
SEARCHRUBRICS ’s granularity enables us to identify specific capability gaps invisible to aggregate metrics, and the
mandatory/optional distinction gives us a way to place an agent on the sufficiency–excellence continuum, aiding
deployment decisions by focusing on minimum viable performance rather than average scores. Our experiments
reveal that today’s best agents achieve only around 67% compliance with these rigorous rubrics, often falling
short in integrating information across documents and providing well-justified answers with proper citations.
Most critically, our findings suggest that improving Deep Research agents requires architectural innovation rather
than incremental refinement: systematic failures in implicit reasoning, multi-document synthesis, and sustained
sequential reasoning point to fundamental limitations in how current systems represent and manipulate complex
information structures.
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A. Extended Related Work

The rapid emergence of deep research agents has been accompanied by several efforts to characterize and evaluate
their capabilities. Recent surveys and roadmap papers highlight the promise and challenges of autonomous LLM-
based research assistants. For example, Huang et al. [12] provide a systematic examination of Deep Research agents,
analyzing their tool integration and planning strategies, while Xu and Peng [27] offer a comprehensive survey
of deep research systems and applications. These works underscore the need for robust evaluation frameworks
aligned with the complex, open-ended nature of research tasks.

Early benchmarks for deep research agents have largely taken one of two approaches: constructing tasks from
static corpora or relying on expert-curated questions. In the first category, benchmarks like AcademicBrowse [30]
and BrowseComp [26] assess an agent’s ability to navigate and retrieve information from academic papers or
the web. AcademicBrowse focuses on literature-based queries (e.g., browsing academic papers for answers), and
BrowseComp comprises over 1,200 web questions that demand multi-hop searching across sites. While these
benchmarks test long-horizon retrieval and factual accuracy, their questions tend to have a predetermined scope or
“ground truth” answers, which simplifies evaluation to matching reference facts. This limits their ability to capture
the open-ended synthesis and exploratory aspect of real research inquiries. Another example is ResearchBench
[16], which builds complex search questions from static data; however, static benchmarks risk data leakage (i.e.,
answers appearing in training data) and cannot adapt to newly emerging information.

The second category of benchmarks uses expert-authored tasks to evaluate research reasoning. Humanity’s
Last Exam (HLE) [21] is an expansive evaluation of 2,500 expert-written questions covering advanced domains
ranging from mathematics to medicine. HLE revealed significant gaps in state-of-the-art models’ knowledge,
but it primarily consists of challenging short-answer questions, rather than multi-document analytical tasks.
Closer to our setting, DeepResearch Bench [8] introduced 100 PhD-level research problems across 22 fields (e.g.,
scientific analysis, legal reasoning), each requiring a long-form report. Their evaluation combines reference-
based metrics and adaptive criteria, including measuring the number and accuracy of citations. This benchmark
confirmed the difficulty of deep research tasks, where no model exceeded roughly 30% on their overall metrics,
yet its scoring approach leans heavily on overlap with reference solutions and simple citation counts. Similarly,
ExpertLongBench [22] targets expert-level, long-form tasks in 9 domains (law, finance, healthcare, etc.), providing
11 complex prompts each accompanied by a domain-specific checklist or rubric. ExpertLongBench introduced
the CLEAR evaluation framework, which extracts a structured checklist from both the model’s output and a
gold reference, then compares them for alignment. This method enables fine-grained assessment of content
requirements, but it depends on high-quality reference outputs for each task. In contrast, our work uses expert-
written criteria without assuming an ideal reference answer, and evaluates responses directly via LLM-as-a-judge –
avoiding potential biases from any single ground-truth essay.

More recent benchmarks have moved toward dynamic, real-world research scenarios. DeepScholar-Bench [20]
focuses on generative research synthesis: it draws live queries from recent arXiv papers and evaluates systems on
writing a related work section by retrieving and summarizing up-to-date literature. Its evaluation emphasizes
three axes (knowledge synthesis, retrieval quality, and verifiability), rewarding comprehensive coverage of
relevant work and correct citation of sources. However, DeepScholar-Bench is specialized to academic writing
tasks, and uses automated metrics (including LLM-generated scores) which may introduce evaluation circularity.
ReportBench [15] takes another automated approach by leveraging existing survey articles as ground truth for
evaluation. It generates academic survey-style prompts and measures the overlap between the AI agent’s citations
and statements and those in a published survey on the same topic. This provides a concrete correctness signal (since
an expert-written literature review is treated as the gold standard), but inherently prioritizes replication of the
reference content over creative or divergent but valid answers. Meanwhile, DeepResearch Arena [24] addresses
the authenticity of research prompts: it automatically curates over 10,000 open-ended tasks from transcripts of
academic seminars across 12 disciplines. By capturing questions that arise organically in expert discussions,
DeepResearch Arena aims to evaluate agents on more ill-defined, exploratory problems. Their evaluation combines
factual grounding checks with adaptively generated rubrics (checklists) to handle the breadth of tasks. One
limitation, however, is that fully automatic rubric generation can miss domain nuances or implicitly favor certain
solution paths.

In parallel to benchmarking efforts, researchers have begun exploring AI “co-scientist” systems that autonomously
propose hypotheses or experimental plans beyond just information retrieval. Notably, Gottweis et al. [10] present
an AI Co-Scientist built on a multi-agent Gemini 2.0 system, which iteratively generates and refines scientific
hypotheses (demonstrated in drug discovery and biology domains). The advent of such systems raises the stakes
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for evaluation: beyond finding correct facts, we must assess whether an AI’s reasoning and conclusions hold up to
expert scrutiny. Initial work in this vein includes benchmarks like SPOT [23], which checks AI-generated scientific
papers for logical errors or inconsistencies. Overall, as deep research agents expand from answering questions to
performing nuanced scientific investigations, the need for fine-grained, human-aligned evaluation becomes ever
more critical.

Our work builds directly on these prior insights. In contrast to previous benchmarks that either rely on static answer
keys or on coarse-grained metrics, RESEARCHRUBRICS offers a new middle ground: a broad collection of realistic
research queries (spanning academic and everyday domains) paired with expertly crafted rubrics that detail the
requirements of a good answer. This approach enables evaluation of multiple dimensions – factual grounding,
cross-source synthesis, reasoning validity, clarity, and citation usage – within a single unified framework. By using
human-written rubrics and having LLM judges apply them, we avoid reward hacking based on simplistic overlap
measures, while still achieving scalable scoring. RESEARCHRUBRICS is complementary to contemporaneous
efforts like ExpertLongBench and DeepResearch Arena: those benchmarks target either highly specialized expert
tasks or massive automatically generated task suites, whereas we prioritize diversity of domains and manually
quality-checked criteria. Together, these efforts push toward a more rigorous and comprehensive assessment of
deep research capabilities.

B. Extended Results

This appendix expands the quantitative analysis of composition, complexity, and error structure, and clarifies the
relationship between output length and rubric compliance.

B.1 Benchmark Composition and Rubric Coverage

Fig. 9 shows the number of rubric axes touched per task (mean = 4.74). This multi-axis coverage reflects our goal
of measuring holistic research ability rather than single-skill performance. Fig. 10 reports the criteria count per
task (20–43; mean ≈26). Fig. 11 decomposes axis proportions by domain, illustrating that domains differ not only
by content but by the expected mix of explicitness, synthesis, and citation behaviors.
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Figure 9: How many evaluation axes does each task cover? Distribution of the number of rubric axes per prompt.
Most tasks require 4 to 5 distinct dimensions of quality simultaneously, encouraging balanced capabilities rather
than single-axis optimization.
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Figure 10: Number of rubric criteria per task.
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Figure 11: Axis mix by domain. Stacked proportions of the six rubric axes across domains.

B.2 Performance Stratified by Complexity Dimension

Figs. 12 and 13 present model compliance scores stratified by conceptual breadth, logical nesting, and exploration
level under binary and ternary grading schemes, respectively. Across both settings, Gemini DR consistently leads,
achieving roughly 65–70% average rubric compliance across most complexity tiers, followed closely by ChatGPT
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DR at around 60–65%, and Perplexity DR lagging near 50%.

A clear pattern emerges: performance degrades monotonically with increased logical nesting depth. Whereas
shallow reasoning tasks (single-hop or two-step queries) are handled well, multi-step analytical or evaluative
problems see sharp drops, particularly for models relying on retrieval-centric architectures. Conceptual breadth
also correlates with difficulty, though less steeply; systems handle multi-domain synthesis better than extended
inferential chaining.
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Figure 12: Performance across Conceptual Breadth, Logical Nesting, and Exploration (Binary Evaluation)
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Figure 13: Performance across Conceptual Breadth, Logical Nesting, and Exploration (Ternary Evaluation)

B.3 Domain-wise Failure Structure

The heatmap in Fig. 14 shows how failure rates distribute across axes within each domain.

B.4 Misclassification Failures in Human-LLM Judge Alignment during Auto-Evaluation

Fig. 15 illustrates the relationship between grading mismatches, i.e., disagreements between the LLM-as-a-judge
and human evaluators, and various analytical dimensions across both binary and ternary classification settings.
Specifically, the top row compares mismatch distributions across rubric categories, the middle row examines
mismatches with respect to rubric importance (mandatory vs. optional), and the bottom row presents mismatch
rates by rubric category, normalized by the size of that category in the dataset. We observe that Implicit Criteria
account for the majority of misclassifications, which is unsurprising given that many rubrics in the dataset belong
to this category. However, when normalized by category size, References & Citation Quality and Synthesis of
Information show a slightly higher proportion of disagreements, suggesting that models may struggle to assess
what constitutes an adequate mention of reference or argument in a response. We also note that mandatory criteria
exhibit a lower proportion of mismatches, which is reassuring, as it implies the model and human raters tend to
align more closely on the mandatory aspects of the response.
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Figure 14: Heatmap of failure contribution by rubric axis across domains.

C. Prompt and Response Length Analysis

C.1 Prompt Word Count Analysis

To understand the scope and complexity of the evaluation tasks, we analyzed the word counts of all 101 prompts
included in RESEARCHRUBRICS. Prompt length serves as a useful proxy for task complexity, as longer prompts
tend to encode more contextual background, sub-questions, and open-ended reasoning requirements.

Across all tasks, prompt lengths are moderately distributed, with a mean of 87.6 ± 58.6 words (median = 68, range
= 13–315). As shown in Fig. 16, most prompts cluster below 100 words, though a long right-tail distribution reflects
the presence of prompts well over 200 words.

Prompts vary substantially by domain (Table 8). Tasks from General Consumer Research, Technical Documenta-
tion, and Business Planning & Research exhibit the longest average prompt lengths, often exceeding 100 words.
In contrast, domains such as AI & ML, Current Events, and Other tend to be more concise.

Prompt length also scales with the benchmark’s complexity dimensions (Fig. 17). Prompts with higher conceptual
breadth, deeper logical nesting, and greater exploration are systematically longer, often doubling in average length
compared to simpler tasks. This pattern underscores that more open-ended research problems require not only
deeper reasoning but also more extensive prompt scaffolding.

C.2 Response Length and Compliance

To contextualize the prompt statistics, we compared the word and token counts of responses generated by three
Deep Research agents: ChatGPT DR, Gemini DR, and Perplexity DR.

On the Markdown outputs (Table 9), Gemini produces the longest responses on average (7,500–7,600 words),
followed by ChatGPT (6,300–6,400 words), while Perplexity outputs are substantially shorter (∼1,800 words).
These differences are consistent across both words and tokens, and between text and rendered formats. High vari-
ance (standard deviations above 2,000–3,000 words) reflects substantial prompt-dependent variation in response
verbosity.
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Figure 15: Comparison of mismatch metrics (by category, importance, and mismatch rate) across binary and
ternary settings.

To understand whether output verbosity correlates with perceived quality, we examine the relationship between
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Figure 16: Distribution of prompt word counts across all 101 tasks. The distribution is right-skewed, with a mean
of 87.6 words and a median of 68 words.
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Figure 17: Prompt word count by task complexity dimensions (Conceptual Breadth, Logical Nesting, and Explo-
ration). Longer prompts are consistently associated with higher complexity levels.

response length (in tokens and words) and overall rubric compliance. Figs. 18a to 18d display these correlations
for Gemini DR, ChatGPT DR, and Perplexity DR.

Moderate positive correlations (r ≈ 0.20 − 0.28 for Gemini and ChatGPT) indicate that longer responses generally
achieve higher scores. Perplexity DR, with the shortest outputs, achieves the lowest correlations.

This supports the length–quality conflation hypothesis: longer reports often perform better because they cover
more rubric criteria, not necessarily because evaluators prefer verbosity. Nonetheless, since RESEARCHRUBRICS
scores are criterion-based rather than holistic, the observed correlation partly reflects genuine informational density
rather than stylistic inflation.

D. Supplementary Figures and Tables

We provide concise descriptions of the ten prompt domains used in RESEARCHRUBRICS in Table 10.

E. Prompts

The prompt we sent to the LLM-as-a-judge can be found in 19

We used two prompt templates in the ablation experiments: one for example removal and one for rubric augmen-
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Table 8: Prompt Word Count Statistics across Domains and Complexity Dimensions

Category Subset Count Mean SD Median Min–Max 95% CI

Overall Statistics
All Prompts 101 87.6 58.6 68.0 13–315 [76.0, 99.2]

By Domain
AI & ML 17 61.8 44.8 46.0 13–169 [38.0, 85.5]
Business Planning & Research 12 111.0 56.2 98.5 36–224 [73.7, 148.3]
Creative Writing 6 69.2 19.9 66.0 40–103 [46.2, 92.1]
Current Events 5 51.0 20.1 55.0 21–76 [23.1, 78.9]
General Consumer Research 11 138.4 80.2 131.0 35–315 [81.9, 194.9]
Historical Analysis 13 81.5 50.2 70.0 30–227 [49.9, 113.1]
Hypotheticals & Philosophy 11 78.3 45.4 69.0 22–187 [46.3, 110.2]
Other 6 61.2 22.6 51.0 40–107 [35.2, 87.2]
STEM 8 80.0 43.9 64.0 30–174 [40.8, 119.2]
Technical Documentation 12 112.3 69.1 75.5 49–271 [66.5, 158.2]

By Conceptual Breadth
Simple 36 79.1 58.7 60.5 13–271 [59.0, 99.2]
Moderate 52 91.2 60.7 72.0 22–315 [74.1, 108.3]
High 13 96.8 45.4 95.0 29–195 [68.3, 125.4]

By Logical Nesting
Shallow 19 88.9 65.8 67.0 21–227 [56.4, 121.5]
Intermediate 46 72.4 40.4 61.5 13–197 [60.3, 84.5]
Deep 36 106.4 68.0 79.5 22–315 [83.0, 129.7]

By Exploration
Low 29 75.6 55.1 56.0 13–227 [54.3, 96.9]
Medium 55 80.8 48.9 66.0 21–271 [67.5, 94.2]
High 17 130.1 72.7 111.0 47–315 [91.5, 168.6]

Table 9: Word and Token Statistics per Model

Type Model Mean SD Median Min Max

Words
ChatGPT 6269.73 3684.21 5481 1328 18824
Gemini 7519.32 2447.70 7562 2909 14640
Perplexity 1828.61 1127.70 1579 128 7352

Tokens
ChatGPT 10169.57 5885.79 9075 2103 30233
Gemini 12153.31 4028.00 11710 4530 26421
Perplexity 3664.36 2006.01 3241 539 14148

tation. Both are shown below for reproducibility.
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Category Description of Prompts

AI & ML Tasks centered on artificial intelligence, machine learning, and data science, including
model evaluation, algorithmic comparisons, ethical considerations, and emerging appli-
cations. Prompts often require synthesis of technical papers, applied case studies, and
discussions of interpretability, safety, or deployment challenges in real-world AI systems.

STEM Science, technology, engineering, and mathematics prompts outside core AI/ML domains.
These tasks require synthesizing information from textbooks, research papers, or technical
reports (e.g., explaining physical principles, analyzing chemical processes, or modeling
engineering systems).

General Consumer Research Everyday research with complex constraints (e.g., finding an apartment under budget,
multi-factor product comparisons, travel itineraries, personal finance or legal advice,
health-related questions requiring reputable sources).

Technical Documentation Prompts involving explanation of complex technical concepts, code, or APIs using official
documentation or repositories (e.g., troubleshooting a programming error with library
docs, comparing software architecture patterns).

Hypotheticals & Philosophy Open-ended prompts asking for speculation, hypotheticals, or philosophical analysis,
often requiring synthesis of diverse viewpoints (e.g., “How might society change if X. . . ?”,
ethical dilemmas, future predictions in technology).

Historical Analysis Questions about historical events, figures, or periods that require pulling from archives,
historical texts, and scholarly interpretations (e.g., analyzing causes of a historical conflict
with primary source references).

Business Planning & Research Prompts related to business or entrepreneurship (e.g., developing a go-to-market strategy,
analyzing a company’s financial health, legal considerations for a startup, HR or marketing
plan), often requiring use of industry reports or case studies.

Creative Writing Long-form creative tasks that incorporate factual elements or research (e.g., writing a
historical fiction scene with accurate period details, or a sci-fi story grounded in real
science).

Current Events Prompts focused on recent or ongoing events, necessitating retrieval of up-to-date news
or data (e.g., analysis of a recent policy change, comparison of current market trends).

Other Miscellaneous prompts that do not neatly fit in the above categories, including cross-
domain questions or niche topics.

Table 10: Prompt domains in RESEARCHRUBRICS.
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Figure 18: Comparison of length vs. score across token and word counts for binary and ternary settings.
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SYSTEM:
You are an expert evaluator tasked with assessing whether a document satisfies specific
rubric criteria. Your evaluation must be precise, objective, and based solely on the
evidence present in the document.

## Evaluation Framework
You will evaluate each rubric criterion using a three-tier satisfaction scale:
1. **Not Satisfied (Score: 0.0)**: The document fails to meet the criterion. Key
elements are missing, incorrect, or inadequately addressed.
2. **Partially Satisfied (Score: 0.5)**: The document partially meets the criterion.
Some elements are present but incomplete, lacking depth, or missing important aspects.
3. **Satisfied (Score: 1.0)**: The document fully meets the criterion. All required
elements are present, well-developed, and appropriately detailed.

## Evaluation Process
1. **Understand the Criterion**: Carefully read and interpret what the rubric is asking
for.
2. **Search for Evidence**: Systematically review the document for relevant content that
addresses the criterion.
3. **Assess Completeness**: Evaluate whether the evidence fully, partially, or fails to
satisfy the criterion.
4. **Provide Reasoning**: Explain your evaluation with specific references to the
document content.

## Important Guidelines
- Base your evaluation ONLY on what is explicitly present in the document
- Do not make assumptions about implied or missing content
- Consider the quality, completeness, and relevance of the evidence
- Be consistent in your evaluation standards across all criteria
- Provide specific examples from the document to support your verdict

Note: Example lists in these rubrics are intended to illustrate possible reasoning
patterns or relevant topics. These example lists contain correct answers but are not
exhaustive. Use them as guidance, but also make your own final judgment about what
qualifies as correct when appropriate.

USER:
## Document Content
{document_content}

## Rubric Criterion to Evaluate
**Title**: {rubric_title}
**Category**: {rubric_category}
**Weight**: {rubric_weigh}

## Your Task
Evaluate whether the above document satisfies this specific rubric criterion.

## Required Response Format
Provide your evaluation in the following JSON format:
“‘json
{
"verdict": "[Not Satisfied/Partially Satisfied/Satisfied]",
"score": [0.0/0.5/1.0],
"confidence": [0.0-1.0],
"reasoning": "Detailed explanation with specific evidence from the document",
"evidence_quotes": ["Direct quote 1", "Direct quote 2", ...],
"missing_elements": ["Element 1 that would improve satisfaction", ...]
“‘}

Ensure your response is ONLY the JSON object, with no additional text.

Figure 19: Prompt used for example removal during rubric preprocessing.
25



SYSTEM:
You are tasked with removing examples from a rubric text while keeping everything else
EXACTLY the same.

Your job is to:
1. Identify portions of text that contain a list of examples, typically in the form
"(e.g., example1, example2, example3)" or similar.
2. Remove ONLY these example portions.
3. Keep all other text, formatting, punctuation, and structure EXACTLY the same.
4. Do not rephrase, reword, or change anything else.
5. Do not add any new content.
6. Simply return the text with the example portions removed.

Examples of what to remove:
- "(e.g., a diagnosis code block, a free-text note snippet without PHI, tabular data
contexting text and numerical data)"
- "(i.e. programmatic text extractions, more rigorous NLP and machine learning techniques,
etc.)"
- "((1) National Library of Medicine, (2) CDC Wonder or (3) publications from well-known
universities)"

Be very careful with maintaining the exact same structure and wording for the rest of the
rubric.

USER:
Please remove the examples from the following rubric text while keeping everything else
EXACTLY the same:

{rubric_text}

Figure 20: Prompt used for grading via the LLM-as-judge framework.
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SYSTEM:
You are an expert at improving rubrics that are used to evaluate model responses. Make the
rubrics more detailed, both in terms of facts the models should cover and any definitions
or examples that should be added, while still keeping the rubrics somewhat concise.

CRITICAL FORMATTING REQUIREMENTS:
- Return exactly ONE cohesive sentence (NO newlines, NO line breaks).
- The rubric should be ONE SINGLE SENTENCE but can contain multiple phrases, subparts,
clauses, and run-on components.
- Target approximately 100 words on average, but you can exceed that when necessary for
completeness.
- Do NOT create multiline, paragraph-style, or bullet-point rubrics.

IMPORTANT: You will receive exactly ONE rubric to improve, and you must return exactly ONE
enhanced version of that same rubric. Do not create multiple rubrics or variations.

Your job is to:
1. Keep ALL original information from the rubric EXACTLY as it is - do not delete or
remove any core information, knowledge or intent from the rubric.
2. Make the rubric more detailed and concrete by adding specific examples inline (e.g.,
specific answers or patterns that might help the model to generalize)
3. Clarify vague terms with more precise descriptions within the same sentence flow.
4. Add any information that may be missing.
5. Make the rubric as actionable and unambiguous as possible while staying concise.

Focus on adding inline:
- Concrete examples in parentheses (e.g., specific technical details, data formats), which
need not be exhaustive.
- Clear boundary conditions.
- Any definitions for unclear terms.

Do NOT:
- Remove any original content.
- Change the fundamental meaning or intent of any rubric.
- Add an entirely new rubric.
- Create multiple versions or variations (don’t generate more than one rubric output).
- Use newlines, bullet points, or multiline formatting.
- Break the rubric into multiple sentences.

Return only the single improved rubric as one cohesive sentence.

USER:
Enhance this rubric by adding specific examples and details while formatting it as ONE
cohesive sentence (no newlines, but the rubric can contain multiple phrases and clauses):

{rubric_text}

Return only the enhanced single-sentence rubric with no additional text.

Figure 21: Prompt used for LLM-based rubric augmentation.
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